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Abstract: Polyp segmentation is a critical task in medical image analysis, particularly in colonoscopy, where it
plays a vital role in the early detection and treatment of colorectal cancer. In recent years, advancements in deep
learning, especially the application of Convolutional Neural Networks (CNNs) and Transformer models, have
significantly improved segmentation performance. Despite these advancements, the generalizability of these
models across different datasets is often limited. Recently, Meta released the Segment Anything Model 2
(SAM2), which has demonstrated exceptional performance in both video and image segmentation tasks. This
paper aims to develop a universal polyp segmentation model by fine-tuning the pre-trained encoder of SAM2.
We introduce a learnable prompt layer within the Transformer blocks and employ a full-scale skip connection
structure as a decoder to integrate multi-scale semantic features. Our model outperforms state-of-the-art
methods on datasets such as Kvasir-Seg and CVC-ClinicDB. Additionally, our experiments show that the model
exhibits excellent transfer learning capabilities on unseen datasets, making it a robust and generalizable model
in the field of polyp segmentation.
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1. Introduction

Polyp segmentation plays a vital role in medical image analysis, particularly in colonoscopy, where early
detection of colorectal polyps significantly enhances diagnostic accuracy and facilitates timely treatment.
Accurate segmentation not only improves physicians’ efficiency but also reduces the risk of misdiagnosis.
However, the varying shapes of polyps, indistinct boundaries, and the complexity of surrounding intestinal
tissues make polyp segmentation a challenging task.

In recent years, deep learning-based methods have achieved remarkable progress in polyp segmentation.
Models such as U-Net [1] and SegNet [2] have demonstrated the effectiveness of convolutional neural networks
(CNNps) in extracting spatial features for precise localization and segmentation. The emergence of Transformer-
based architectures, particularly Vision Transformer (ViT) [3], has further advanced this field by leveraging
self-attention mechanisms to capture long-range dependencies and contextual information. Hybrid models that
integrate CNNs and Transformers, such as SSFormer-L [4], ColonFormer [5], TransUNet [6], and TransFuse [7],
have further improved segmentation performance. However, despite their success on benchmark datasets, many
of these models exhibit limited generalization when applied to unseen datasets, underscoring the need for a
more adaptable and robust segmentation framework.

Vision foundation models (VFMs) have recently gained attention in computer vision due to their strong
generalization capabilities across various visual tasks, including image classification, object detection, and
segmentation. The Segment Anything Model (SAM), a pioneering foundational model, has demonstrated
impressive segmentation capabilities through its powerful prompting mechanism. Building upon this, recent
variants such as FastSAM [8], EfficientSAM [9], and SAM2 [10] have further refined segmentation
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performance. SAM2, developed by Meta, introduces Memory Attention and benefits from training on larger
datasets, enhancing both video and image segmentation. However, due to its inductive biases from natural image
datasets, SAM2’s performance in specialized fields like medical imaging remains suboptimal. Additionally,
without manual prompts, SAM tends to produce class-agnostic segmentation, limiting its effectiveness in
domain-specific tasks such as polyp segmentation.

In this work, we leverage the rich prior knowledge embedded in vision foundation models by fine-tuning
the SAM2 encoder for polyp segmentation. Specifically, we introduce a learnable prompt layer within the
Transformer encoder blocks and design a full-scale skip connection decoder to effectively integrate multi-scale
semantic features. Additionally, we propose a Channel Attention (CA) module that learns critical channel
information through multiple pooling operations, enhancing the model’s ability to generalize across diverse
polyp morphologies. By incorporating deep supervision during training, our method surpasses state-of-the-art
approaches on benchmark datasets such as Kvasir-Seg and CVC-ClinicDB. Furthermore, extensive
generalization experiments demonstrate that our model maintains strong performance on unseen datasets,
highlighting its transferability.

The main contributions of this paper are summarized as follows:

*  We fine-tuned the SAM2 encoder for the polyp segmentation task by freezing its parameters and
embedding small, learnable prompt layers. Experiments show that our model outperforms existing state-
of-the-art methods and demonstrates strong generalization capabilities, excelling in cross-dataset polyp
segmentation tasks.

*  We introduce a Channel Attention (CA) module that generates adaptive channel weights through diverse
pooling techniques, enabling the model to focus on critical feature channels. Combined with a full-scale
skip connection decoder, this approach enhances multi-scale feature integration and improves
segmentation robustness across complex polyp structures.

2. Related Work

2.1. SAM?2

SAM2 is a foundational model designed to address the challenge of promptable visual segmentation in
images and videos. This model utilizes a transformer architecture with streaming memory, incorporating
additional components such as a memory encoder, memory bank, and memory attention. These enhancements
enable it to effectively process and utilize memory information for real-time video handling. As the successor
to SAM, SAM2 features multiple improvements, significantly enhancing its segmentation capabilities:

Video Segmentation Ability: SAM2 introduces support for video segmentation, allowing it to segment
objects within videos and perform cross-frame tracking and editing.

Increased Accuracy and Speed: For the same image segmentation tasks, SAM2 achieves a sixfold speed
improvement over SAM while maintaining higher segmentation accuracy.

Fine-Grained Segmentation: SAM2 can deliver more precise and finegrained segmentation, extracting
deeper semantic information, which enhances its potential for fine-tuning in small object segmentation tasks
compared to SAM.

2.2. SAM?2 in Medical Image Segmentation

According to studies [11,12], although SAM2 demonstrates exceptional performance in general
segmentation tasks, its effectiveness in specialized and complex tasks such as medical image processing remains
unsatisfactory. To address this limitation, researchers have undertaken various efforts to explore the potential of
SAM?2 within the medical field. Reference [11] introduced SAM2-Adapter, which embeds simple adapters into
the hierarchical layers of the SAM2 encoder, enabling the model to learn task-specific knowledge and
effectively overcoming SAM2’s limitations in complex low-level segmentation tasks. In [13], the largest vision
encoder (UNI) pretrained on histopathological images was integrated with the original SAM2 encoder,
alongside the introduction of a learnable Kolmogorov—Arnold Networks (KAN) classification module to
replace the manual prompt process, significantly enhancing SAM2’s performance in pathological image
segmentation. Ref. [14] combined SAM2 with the YOLOv8 model, utilizing YOLOVS’s bounding box
predictions to autonomously generate input prompts for SAM2, reducing reliance on manual annotations while
achieving high-precision segmentation.
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In contrast to the aforementioned works, this paper proposes a refined approach that leverages lightweight
Adapters for fine-tuning the SAM2 encoder.

3. Method

The overall structure of the network is shown in Figure 1, with the main components including the SAM2
Encoder, Adapter, Channel Attention Module, Full-Scale Skip Connection Decoder, and Full-Scale Deep
Supervision. This section will provide a detailed introduction to each module.
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Figure 1. Pipeline of our model. Specifically targeting the core challenges of polyp segmentation—complex
target morphology and variable scales—a channel attention module and a full-scale skip connection decoder are
introduced to further optimize segmentation outcomes. By harnessing the rich prior knowledge embedded in
visual foundation models, our method enhances the generalization capability of the model in polyp segmentation
tasks.

SAM2 Encoder and Adapter: Our model uses a fine-tuned SAM2 encoder as the backbone network to
extract feature information from polyp images. According to [11,15], introducing task-specific knowledge
through the construction of an appropriate prompt layer can enhance the model’s generalization in downstream
tasks within this domain. We froze the weight parameters in the SAM2 pre-trained encoder and embedded
learnable prompt layers between transformer layers, similar to the method used in [16]. This effectively fine-
tunes the model for polyp segmentation while reducing training and inference costs and retaining the knowledge
learned by SAM?2 from large-scale image data. To further reduce computational load, we designed our adapter
to consist of only

P; = GELU(MLP,,, (GELU(MLP;, GELU(MLP,,, (F;))))) )

where P; and F; are the input feature map and output prompt, respectively. MLP,,, and MLPy,,,, are the up-
projection and down-projection linear layers, respectively, used to adapt the feature dimensions of the
transformer layers. MLP,,,,,. maintains the feature dimensions unchanged to learn task-specific knowledge for
downstream tasks. Notably, all linear layers share parameter information.

Channel Attention (CA): For the output feature map of the i-th layer of the SAM2 encoder, F; € RE*H*W
(where i = 1, 2, 3, 4) global average pooling and global max pooling are first performed. Here, C, H and W
represent the number of channels, height, and width, respectively. The features extracted through these two
pooling methods represent the average and maximum values of each channel. After combining them, a Sigmoid
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activation function is used to generate the weights for each channel f;* € R€*1*1, This module achieves down-
sampling and feature compression through the pooling process, thereby reducing the dimensionality of the
feature map and eliminating redundant data. Global max pooling helps extract the most representative
information from each channel, while global average pooling reflects all data evenly to minimize excessive
information loss. Finally, the CA module multiplies the generated channel weights element-wise with the input
feature map to obtain the filtered feature map, effectively extracting and compressing information while
retaining key information. The core purpose of the CA module is to enhance the most important channels in the
input feature map through weight adjustment. This aids in highlighting the key features shared between the
source and target domains in transfer learning. The process can be expressed as:

fi* = Sigmoid(MaxPool(f;) + AvgPool(f;)) (@)

fi=fi+f 3

where MaxPool and AvgPool are the max pooling and average pooling operations, respectively.

Full-Scale Skip Connection Decoder: Unlike SAM, SAM?2 is based on a hierarchical vision transformer,
allowing it to extract multi-layer information at different scales. This naturally provides advantages for
recognizing polyps of various sizes across different datasets. To effectively combine high-level and low-level
semantic information from different scales, we selected a full-scale skip connection network structure as the
decoder. For the i-th layer node in the decoder, information is sourced from three places: shallower layers, the
same layer, and deeper layers of the decoder feature maps. MaxPooling and bilinear interpolation are used to
unify the dimensions of shallow and deep features, respectively, and finally, all layer information is
concatenated. The convolution in the decoding layer is performed in two steps: first, individual convolutions
on to integrate and extract information. The design of the full-scale skip connection decoder aims to effectively
integrate features from different levels to enhance the model’s performance in multi-scale tasks. For specific
implementation details of this network, refer to [17], which will not be elaborated here. Only the modifications
made to this model are explained: (1) We replaced the encoder outputs in the original model with the SAM2
encoder outputs processed by the CA module. (2) To accommodate the multi-scale feature layers output by the
SAM?2 encoder, we modified the decoder to have four layers.

Full-scale Deep Supervision: To better integrate multi-scale information, we train the model using deep
supervision. In the full-scale skip connection structure, each decoder corresponds to a side output SO; (i = 1, 2,
3, 4), which is supervised using ground truth. For deep supervision, the last layer of each decoder is passed
through a standard 3 x 3 convolution layer, followed by bilinear upsampling and a sigmoid function. For each
side output, binary cross-entropy loss L. and Dice loss Lp;.. are computed with respect to the ground truthGT.
The losses from the four side outputs are summed and averaged to obtain the total loss Ly for backpropagation,
expressed as:

n
1
Ly == ) [Leo (S04, GT) + Lyiee (50, GT)] @

i=1

4. Experiments

4.1. Datasets

To evaluate the performance of our model, we selected the following two popular polyp segmentation
datasets for experiments:

Kwvasir-SEG is an open-source dataset for gastrointestinal polyp images and corresponding segmentation
masks, manually annotated and verified by experienced gastroenterologists. It contains 1000 polyp images from
the Kvasir dataset v2, along with their respective ground truth annotations. The images in Kvasir-SEG vary in
resolution from 332 x 487 to 1920 x 1072 pixels, with polyps covering 100% of the images. The number of
pixels in the images ranges from 849 to 1,094,201. This variety in scale makes Kvasir-SEG a challenging dataset
for model segmentation, as it includes polyps of different sizes. The dataset is intended for research and
development of new and improved methods for polyp segmentation, detection, localization, and classification,
offering cutting-edge solutions for polyp-related tasks.

CVC-ClinicDB is a medical imaging dataset designed for colorectal cancer detection and research,
particularly for the early detection and diagnosis of colorectal cancer. It consists of 612 high-resolution
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colonoscopy images from rectal cancer patients, with each image annotated by experts to mark the cancerous
lesions. This dataset is widely used in the training and validation of colorectal cancer models, image
segmentation, medical image processing, and clinical research.

4.2 Evaluation Metrics

The performance of the our model is evaluated using several key metrics: Dice Score provides a balanced
view of the model’s effectiveness by measuring the overlap between the predicted changes and the ground truth.
Dice Score, Intersection over Union (IoU), Precision and Recall. Precision measures the accuracy of the model’s
positive predictions, while Recall assesses its ability to identify all actual changes. IoU evaluates the spatial
overlap between the predicted changes and the ground truth. These metrics are defined as follows:

Do Seore — 2 X TP 5
1CESCOTe =5 X TP + FP + FN )
loU = e 6
UTTPYFP+FN ©
Precision = — 7
rec151on—TP+FP @)

Recall = —— 8

A= TP T FN ®)

where TP, FP, FN, and TN are the true positive, false positive, false negative, and true negative counts,
respectively.

4.3. Implementation Detail

We trained our model to predict binary segmentation maps for RGB images. Following the conventions
in [5,6,18-20], we resized the input images to a resolution of 352 x 352. To ensure the objectivity and fairness
of the experiment, all models evaluated in this study used the same dataset preprocessing and splitting rules.
Specifically, we partitioned the dataset into training, validation, and test sets with an 8:1:1 ratio, following the
practices outlined in [5,8,18,19]. During training, several data augmentation techniques were applied: First, we
applied Gaussian blurring to the images. Next, we randomly adjusted the brightness, contrast, and hue of the
images. The images were also subjected to horizontal and vertical flipping. Additionally, affine transformations
were applied, including rotations, translations, scaling, and shearing. Gaussian blurring and color jitter were
applied only to the images, while flipping and affine transformations were applied to both the images and their
corresponding segmentation maps.

We selected several existing state-of-the-art (SOTA) methods, including DUCK-Net [20], FCN-
Transformer [18], Pra-Net [19], MSRF-Net [21], ResUnet++ [22] and U-Net [2], to conduct segmentation
performance comparison experiments based on the Kvasir-SEG and CVC-ClinicDB datasets. Furthermore, to
assess the generalizability of our model on unseen datasets, we designed a cross-dataset generalization
experiment. In this experiment, we trained the model on one dataset and tested the results on another.
Specifically, we used the pre-trained weights obtained from training on the Kvasir-SEG dataset and applied
them to the test set of CVC-ClinicDB to evaluate performance, and vice versa. This process ensured that the
model has the capability to transfer across different datasets and effectively adapt to various types of medical
imaging data. We conducted the same experiment with the existing SOTA methods, and through comparison of
the segmentation results from different models, we demonstrated the superior generalization and robustness of
our model on unseen data.

The model was built using the PyTorch framework and trained on a single NVIDIA RTX 3090 GPU with
24 GB of VRAM. The SAM2 encoder is initialized with the sam2 hiera large weights of size 224.4 M. During
training, we used the AdamW optimizer with an initial learning rate of 1 x 1074, a batch size of 4, and a total of
150 epochs. The loss function combined Dice loss and binary cross-entropy loss. A learning rate scheduler
reduced the learning rate by half when the Dice score did not improve, with a minimum learning rate of 1 x
107°. Model performance was evaluated using metrics such as Dice score, loU, precision, recall, and accuracy,
and the model was saved whenever the Dice score improved.
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4.4. Evaluation

Qualitative Results: Figure 2 compares the segmentation results of different SOTA models on three test
images from the Kvasir-SEG dataset. It is evident that our model leverages the multi-scale features extracted
by SAM2 and the decoder’s full-scale skip connection structure to effectively fuse and learn high-level and
low-level semantics. In the second image, where large and small polyps overlap, and in the third image, where
a small polyp is hidden in a shadow, most models capture only the more prominent polyps while ignoring the
lower-layer or obscured ones. In contrast, our model excels at capturing global features, enabling it to accurately
predict polyps in all these challenging scenarios.

Input GT Ours DN FCNT Pra MSRF RU4++ Unet

DHENNRANN
P10 90 vv vvY
ECERORON

Figure 2. Vision Comparison of Models on Different Datasets. Note: Unet refers to U-Net, RU++ refers to
ResUnet++, MSRF refers to MSRF-Net, Pra refers to Pra-Net, FCNT refers to FCN-Transformer, and DN refers
to Duck-Net.

Learning Capability: Tables 1 and 2 compare the performance of different methods on the Kvasir-SEG
and CVC-ClinicDB datasets, respectively. The evaluation metrics include mDice, mloU, mPrecision, and
mRecall, where m represents the average performance of the model on the test set. For methods with training
setups and dataset splits similar to ours, we cite the experimental results reported in their original papers. We
trained and tested methods that did not use the same datasets (e.g., U-Net) using our experimental settings.

Table 1. Model Evaluation on Kvasir-SEG.

Kvasir-SEG

Model mDice mloU mPrec mRec
U-Net 0.7796 0.7152 0.7041 0.7688
ResUnet++ 0.8133 0.7927 0.8774 0.7064
MSRF-Net 0.9217 0.8914 0.9666 0.9198
Pra-Net 0.898 0.840 - -

FCN-Transformer 0.9385 0.8903 0.9459 0.9401
DUCK-Net 0.9502 - 0.9628 0.9379
Our Model 0.9489 0.9064 0.9565 0.9470

Table 2. Model Evaluation on CVC-ClinicDB Dataset.

CVC-ClinicDB

Model mDice mloU mPrec mRec
U-Net 0.7902 0.7427 0.7183 0.8065
ResUnet++ 0.7955 0.7962 0.8785 0.7022
MSRF-Net 0.9420 0.9043 0.9427 0.9567
Pra-Net 0.899 0.849 - -

FCN-Transformer 0.9469 0.9020 0.9525 0.9441
DUCK-Net 0.9478 - 0.9468 0.9489
Our Model 0.9482 0.9049 0.9540 0.9443

The results demonstrate that on the Kvasir-SEG dataset, our model achieved a mDice of 0.9489 and a
mloU of 0.9064, showing superior performance compared to existing SOTA models. Although DUCK-Net,
currently a leading polyp segmentation network, slightly outperformed our model in mDice (0.9502), it is worth
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noting that DUCK-Net is specifically designed for polyp segmentation. In contrast, our model, derived from
fine-tuning a larger foundational model, may not excel in all individual metrics. However, our model delivers
more balanced performance across multiple key metrics, indicating a more comprehensive segmentation
capability. On the CVC-ClinicDB dataset, our model achieved nearly the best performance across all metrics,
particularly excelling in core indicators such as mDice (0.9482) and mloU (0.9049). It was only slightly
outperformed by DUCK-Net in mRec. These results highlight the excellent performance of our model on
individual datasets, demonstrating its robust learning capability and adaptability.

Generalization ability: Generalization remains a critical challenge in medical image segmentation, where
models trained on a specific dataset often struggle when applied to unseen datasets. To evaluate our model’s
cross-dataset generalization, we conduct experiments by training on one dataset and testing on another.

Training on Kvasir-SEG, Testing on CVC-ClinicDB. Table 3 presents the results when models are trained
on the Kvasir-SEG dataset and tested on the CVC-ClinicDB dataset. Our model achieves an mDice of 0.9182
and an mloU of 0.8637, significantly outperforming all other methods. Compared to FCN-Transformer (mDice
of 0.8760) and DUCK-Net (mDice of 0.8464), our model maintains higher segmentation accuracy across all
metrics, underscoring its strong transfer learning capability.

Table 3. Trained on Kvasir-SEG and tested on CVC-ClinicDB.
Trained on Kvasir-SEG, Tested on CVC-ClinicDB

Model mbDice mloU mPrec mRec
U-Net 0.7132 0.6192 0.7240 0.7691
ResUnet++ 0.5732 0.4763 0.6954 0.5811
MSRF-Net 0.6914 0.6280 0.6973 0.7811
Pra-Net 0.7815 0.7223 0.8266 0.8074
FCN-Transformer 0.8760 0.7828 0.8863 0.8947
DUCK-Net 0.8464 0.7724 0.8953 0.8260
Our Model 0.9182 0.8637 0.9240 0.9185

Training on CVC-ClinicDB, Testing on Kvasir-SEG. Table 4 evaluates the reverse scenario, where models
are trained on CVC-ClinicDB and tested on Kvasir-SEG. Our model achieves the highest performance, with an
mDice of 0.8944 and an mloU of 0.8375, surpassing FCN-Transformer (mDice of 0.8764) and DUCK-Net
(mDice of 0.8373). These results highlight our model’s ability to adapt to different polyp segmentation datasets
while maintaining stable and high-performance segmentation. Our model’s strong generalization can be
attributed to the rich feature extraction capabilities of SAM2’s pre-trained encoder, which enables effective
adaptation to varying polyp distributions. This characteristic is highly valuable in medical image segmentation,
as it reduces the need for dataset-specific retraining while maintaining high segmentation quality. Thus, it is a
cost-effective and practical solution for real-world clinical applications.

Table 4. Trained on CVC-ClinicDB and tested on Kvasir-SEG.

Trained on CVC-ClinicDB, Tested on Kvasir-SEG

Model mDice mloU mPrec mRec
U-Net 0.6014 0.4413 0.5398 0.6616
ResUnet++ 0.5236 0.4315 0.6673 0.4659
MSRF-Net 0.7417 0.6320 0.8159 0.7556
Pra-Net 0.7851 0.6914 0.7790 0.8335
FCN-Transformer 0.8764 0.8132 0.9211 0.8660
DUCK-Net 0.8373 0.7754 0.7631 0.8550
Our Model 0.8944 0.8375 0.9483 0.8853

Ablation study: To verify the effectiveness of the Channel Attention module (CA), we conducted an
ablation study on the Kvasir-SEG dataset, with results shown in Table 5. After removing CA, the model’s mDice
dropped from 0.9489 to 0.9402, and the mIoU decreased from 0.9064 to 0.8893. This indicates that CA
significantly enhances the model’s ability to capture detailed features, thereby improving segmentation accuracy
and consistency. These findings demonstrate that CA plays a critical role in enhancing feature representation
and optimizing segmentation performance.
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Table 5. Ablation study of the proposed—on the Kvasir-SEG dataset.

Model mDice mloU mPrec mRec
without CA 0.9402 0.8893 0.9328 0.9436
(Ours) 0.9489 0.9064 0.9565 0.9470

5. Conclusion

In this paper, we proposed a novel polyp segmentation model by fine-tuning the Segment Anything Model

2 (SAM2) encoder, combined with a learnable prompt layer and a full-scale skip connection decoder. Our
approach effectively leverages the pre-trained knowledge embedded in SAM2, making it both computationally
efficient and capable of producing high-quality segmentation results. Additionally, we evaluated the model’s
generalization performance by testing it on multiple unseen datasets. Our results show that the model maintains
robust segmentation capabilities across these diverse datasets, further highlighting its strong generalization

ability and potential for real-world clinical applications.
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