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Abstract: Image classification is a vital research direction in computer vision all over the world. Before the 

advent of deep learning, image classification relied on manual feature extraction and conventional machine 

learning algorithms. However, Convolutional Neural Networks (CNNs) revolutionized this field by 

automatically learning features from data. The article discusses the fundamental principles of convolutional 

neural networks and compares various CNN architectures. Key layers such as convolutional, pooling, activation, 

fully connected, and dropout layers are explained in detail, along with techniques like backpropagation and 

optimization algorithms. Additionally, common CNN models like LeNet, AlexNet, VGGNet, GoogLeNet, 

ResNet, SENet, and EfficientNet are introduced, highlighting their characteristics and applications.

Keywords: image classification; convolutional neural networks; computer vision; machine learning; deep 

learning

1. Introduction

Image classification is an important task in the field of computer vision, which refers to the process of 

assigning digital images to different predefined categories or labels. The improvement of image classification 

technology is a crucial component driving the development of computer vision, with its main processes 

including image data preprocessing, feature extraction and representation, and classifier design.

Before the rise of deep learning, image classification relied mainly on manually designed feature extraction 

methods such as Scale-Invariant Feature Transform and Histogram of Oriented Gradients. These methods 

involve extracting local features from images and using traditional machine learning algorithms for 

classification, such as Support Vector Machines (SVM) and Random Forests. In the 1960s, Huber and Wiesel 

proposed the concept of "receptive fields" while experimenting with the visual cortex cells of cats, which later 

was introduced into the research of CNNs. In the 1980s, Fukushima and Miyake proposed the "Neocognitron" 

based on "receptive fields," which can be seen as the first implementation of CNNs. Subsequently, researchers 

attempted to learn features using multilayer perceptrons and train models using the backpropagation (BP) 
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algorithm. LeCun et al. proposed a CNN model called LeNet-5 [1], but it only achieved good results in 

handwritten digit recognition. The models proposed at that time encountered problems such as vanishing 

gradients, local optima, and overfitting as the depth of the network increased, leading to a dilemma in the 

research of deep neural network models.

Hinton et al. proposed effective learning algorithms to solve the difficulty of learning in multilayer neural 

networks. The learned features more fundamentally represent the data, which helps in visualizing or classifying 

the data. The problem of vanishing gradients in neural network training can be alleviated by normalized 

initialization, gradually triggering the boom of deep learning. With the improvement of hardware computing 

capabilities, such as the emergence of accelerators like GPU and TPU, and the continuous development of deep 

learning frameworks (such as TensorFlow, PyTorch, etc.), training and deploying deep learning models have 

become more efficient and convenient. For instance, the integration of techniques such as XGBoost in ultra-

wideband radio technology, as mentioned by Liu et al. reflect a trend toward employing sophisticated machine 

learning methods across various engineering domains [2,3]. Shen et al., Wang et al., and Deng et al. examine 

various aspects of lipid metabolism and protein functions, which can be correlated with advances in image 

recognition and classification techniques to enhance the visualization and analysis of cellular processes in 

cardiovascular research [4–6]. Qiu et al., explores the estimation of tail risk measures in finance and education 

through extreme value mixture modeling [7, 8]. Liu et al., discuss using machine learning and robotics for 

condition assessments, emphasizing their potential in visual recognition and image classification [9,10]. Deng et 

al., demonstrated a five-beam interference model for enhanced microfabrication control, incorporating deep 

learning [11,12]. Similarly, advanced research in PCSK9 secretion involving cargo receptor protein interactions 

indicates the level of detail being explored in biochemical signal pathways, which parallels the depth of study in 

neural networks for image classification [13–16]. Also, Even the challenges brought by remote learning can be 

alleviated through the application of computer vision and image recognition technologies to enhance the online 

learning experience [17]. These works collectively highlight the technological evolution and the integration of 

machine learning and deep learning techniques in diverse fields, not just in visual computing but across a 

spectrum that includes civil engineering, biosensing, and even nano photonics [18–21].

In the realm of image classification, particularly against adversarial attacks, the study in ACM Transactions 

on Embedded Computing Systems provides a novel approach for enhancing the efficiency and security of deep 

neural networks through non-iterative model pruning [22]. Additionally, Sun et al., offers insights into efficient 

image data handling, applicable to both telecommunications and large-scale image datasets [23]. Moreover, the 

transition challenges highlighted by Li et al. in their study on the sudden shift of engineering courses to remote 

learning shed light on adapting educational strategies in computer vision, a crucial consideration during 

unforeseen disruptions like public health crises [24,25]. These studies collectively advance the field of computer 

vision by integrating cross-disciplinary research findings into practical applications and education.

This article will focus on introducing the basic structure and principles of classical neural networks, as well 

as comparing and analyzing the advantages and disadvantages of various convolutional network architectures.

2. Overview of CNNs

Convolutional Neural Network (CNN) [26, 27] is a type of deep learning model specifically designed for 

processing data with grid-like structures, such as images and audio. CNNs utilize convolutional and pooling 

operations to progressively extract features from input data, and through multiple layers of nonlinear 

transformations, they map the data into higher-dimensional representation spaces. In this way, CNNs can capture 

both local features and global structures in the data, learning abstract representations of the data, thus enabling 

tasks such as classification, detection, or regression. CNNs have found wide applications in fields such as image 

processing, speech recognition, natural language processing, and have achieved state-of-the-art performance in 

many tasks.
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2.1. Key Layers of CNN

2.1.1. Convolutional Layer

Convolutional layers are one of the core components of convolutional neural networks, used for extracting 

features from input images. It consists of multiple convolutional kernels, each learning specific features such as 

edges, textures, etc. The convolution operation slides the convolutional kernel over the input image, performing 

a dot product and summing at each position to generate an output feature map. This operation allows the 

network to retain spatial structural information of the input image and extract useful features from it.

Additionally, convolutional layers employ parameter sharing and sparse connections, effectively reducing 

the number of trainable parameters, thus reducing the model's complexity and computational load. This design 

enables convolutional layers to effectively handle the high-dimensional nature of image data, improving the 

network's generalization ability and performance.

In general, the size of the input feature map is h×w×c (height h, width w, channels c), and each 

convolutional kernel is of size k×k×c, where the number of kernels should be equal to the number of input 

channels. Figure 1 [26] illustrates the convolution process between the input feature map (5×5×3) and the 

convolutional kernel (3×3×3).

The convolution process can be roughly represented by the following formula:

fout = f (∑i = 3

3

Mi* Wi + B)                  (1)

Here, Mi represents the feature map of the input, Wi is the weight convolutional matrix, B is the bias matrix, 

f (×) denotes the non-linear activation function, and fout is the output feature map.

The specific calculation in the convolutional layer involves the cross-correlation operation between the 

convolutional kernel and the feature map. For any input 2-D matrix size i, convolutional kernel size k, stride s, 

and padding p, the size [28] of the output feature map is:

ο =  é
ë
êêêê i + 2p - k

s
ù
û
úúúú + 1                             (2)

As shown in Figure 2 [26], assuming a simple cross-correlation operation between one of the mentioned 

feature maps and the convolutional kernel, the input is a feature map matrix with both height and width of 3. 

The convolutional kernel starts from the top left corner of the input matrix and slides over the input array from 

left to right and top to bottom in sequence.

Figure 1.　Convolution Process Diagram [26].
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2.1.2. Pooling Layer

The pooling layer typically follows the convolutional layer. The main purpose of using the pooling layer is 

to achieve down sampling and dimensionality reduction of the input image, thereby reducing the number of 

connections in the convolutional layer and lowering the computational burden of the network. Additionally, it 

can also achieve scale invariance, translation invariance, and rotation invariance of the input image, while 

enhancing the robustness of the output feature map to distortions and errors in individual neurons. In pooling 

operations, a sliding window is usually used to move over the feature map, with the distance of each movement 

determined by the stride. At each window position, the pooling layer performs pooling operations based on the 

feature values within the window. Common pooling operations include max pooling and average pooling, with 

max pooling being more common in practice as it reduces computational burden while retaining important 

features. Although there are other pooling methods such as Lp pooling, mixed pooling, and random pooling, 

they can more effectively mitigate overfitting issues in convolutional neural networks. The relationship between 

the input and output matrix sizes in pooling operations generally follows the following relationship [28]:

ο =  é
ë
êêêê i - k

s
+ 1ù

û
úúúú                               (3)

2.1.3. Activation Function

The activation function in Convolutional Neural Networks (CNNs) refers to the non-linear function applied 

to each neuron in the neural network. The role of the activation function is to introduce non-linearity, enabling 

the neural network to learn complex patterns and representations. The Table 1 lists common activation functions:

Table 1.　Common Activation Functions.

ReLU 
(Rectified 

Linear 
Unit)

Sigmoid

Tanh

Leaky 
ReLU

f ( x) =max(0 x)

f ( x) =  1
(1 + e-x )

f ( x) =
 (ex -  e-x )

(ex +  e-x )

f ( x) =  {x     x > 0

αx   x £ 0

 

Mitigate the vanishing gradient problem and accelerate the 
convergence speed of the network.

Map inputs to continuous values between 0 and 1, allowing the 
output to be interpreted as probabilities.

Map inputs to continuous values between -1 and 1.

Address the issue of "neuron death" in ReLU function. αα is a 
small positive number, typically set to 0.01.

Activation 
Function

Formula Description

Figure 2.　Convolution operation [26].
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ELU 
(Exponenti
al Linear 

Unit)

Softmax

f ( x) =
 
ì
í
î

ïï
ïï

x                        x > 0

α* ( )ex - 1    x £ 0

f ( x) =  ex

åex

Multiply by an exponentially increasing slope when the input is 
less than 0, enhancing the stability of the network.

Typically used in the output layer of multi-class classification 
tasks, it transforms the raw output of the network into a form 

representing the probabilities of each class.

Cont.

Activation 
Function

Formula Description

2.1.4. Fully Connected Layer

In Convolutional Neural Networks (CNNs), the fully connected layer is located at the end of the network, 

flattening the feature maps outputted by the convolutional and pooling layers into vectors, and connecting them 

to the output layer to complete classification or regression tasks. Each neuron in the fully connected layer is 

connected to all neurons in the preceding layer, resulting in many parameters. Non-linear transformations are 

introduced through activation functions. The fully connected layer plays a crucial role in extracting high-level 

features and providing effective feature representations. However, it is prone to overfitting, so it is often 

combined with regularization methods such as Dropout to improve the network's generalization ability.

2.1.5. Dropout

The Dropout layer is a regularization technique used to reduce overfitting in models. During training, 

Dropout randomly sets a portion of neuron outputs to zero, thereby reducing interdependencies between neurons 

and making the network more robust.

2.2. Loss Function

The loss function, also known as the cost function or objective function, plays a crucial role in machine 

learning and deep learning. It is used to measure the difference between the model's predictions and the true 

labels and serves as the core of optimization algorithms. By minimizing the loss function, the model parameters 

are optimized to make the model's predictions as close to the true labels as possible. The Table 2 below shows 

some common loss functions.

Table 2.　Common Loss Functions.

Mean 
Squared 

Error 
(MSE)

Cross-
Entropy 

Loss

Log Loss

MSE =  
1
n

 ∑i = 1

n ( yi -  ŷi) 2

CE =

 -
1
n

 ∑i = 1

n [ ]yi log ( )ŷi + ( )1 -  yi  log (1 -  ŷi )

Log Loss =  -
1
n

 ∑i = 1

n [ ]yi log ( )ŷi

Measures the average squared difference 
between the predicted values ŷi and the 

actual values yi. Penalizes large errors more 

heavily.

Used for binary classification. Compares the 
predicted probabilities ŷi of the binary 

classes with the true binary labels yi .

Also known as Binary Cross-Entropy, it 
quantifies the difference between the 

predicted probabilities ŷi and the true binary 

labels yi .

Loss 
Function

Formula Description
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Hinge 
Loss

Dice 
Loss

Hinge =max (0 1 -  yi · ŷi )

Dice =  
2 ´ Intersection ( )y ŷ

Union ( )y ŷ +  ϵ

Often used for binary classification with 
Support Vector Machines (SVMs). Penalizes 

predictions less than one, encouraging 
correct classification with a margin.

Particularly used for tasks like image 
segmentation. Measures the overlap between 
predicted ŷ and true y masks. It encourages 

higher overlap by penalizing lower scores.

Cont.

Loss 
Function

Formula Description

2.3. Back Propagation

Backpropagation is an optimization algorithm used to train neural networks. Its basic idea is to compute the 

gradient of the loss function with respect to the network parameters, and then use gradient descent or other 

optimization algorithms to update the network parameters, thereby minimizing the loss function. Firstly, the 

neural network's output is computed through forward propagation, and the value of the loss function is 

calculated. Then, starting from the output layer, the impact of each parameter on the loss function is calculated 

layer by layer using the chain rule, and the error signal is propagated back to the input layer. Next, based on the 

gradient of the loss function with respect to the parameters, gradient descent or other optimization algorithms 

are used to update the network parameters. Finally, the process of forward propagation, backpropagation, and 

parameter updating is repeated until a preset stopping condition is met.

2.4. Optimizer

Optimizer is a tool in deep learning used to update model parameters to minimize the loss function. It 

calculates the gradient of the loss function with respect to the parameters and adjusts the parameter values using 

gradient information, continuously optimizing the model's performance. The table below contains several 

common optimizers:

⋅Gradient Descent: The most fundamental optimization algorithm, which adjusts the parameters based on the 

gradient direction of the loss function, gradually reducing the loss function. Common gradient descent 

algorithms include Batch Gradient Descent, Stochastic Gradient Descent, and Mini-batch Gradient Descent.

⋅Momentum Optimizer: Momentum optimizer is based on the exponential weighted average of gradients, 

which can accelerate model convergence and reduce oscillations. It introduces a momentum term to track the 

historical information of gradients, thereby considering the previous update directions when updating 

parameters.

⋅AdaGrad: Adjusting the learning rate based on the accumulated historical gradients of parameters, using a 

smaller learning rate for frequently occurring parameters and a larger learning rate for infrequently occurring 

parameters, thereby optimizing the model parameters more effectively.

⋅RMSProp: RMSProp is an improved version of AdaGrad, which introduces a decay coefficient to smooth 

the accumulated historical gradients, thereby avoiding the issue of the learning rate decreasing too quickly.

⋅Adam (Adaptive Moment Estimation): Adam combines the advantages of both momentum optimization 

and RMSProp by simultaneously considering the first and second moment estimates of gradients and correcting 

them. Adam is generally considered one of the most outstanding optimization algorithms and is widely used in 

deep learning.

⋅AdaDelta: It's a further improvement over AdaGrad, enhancing performance by dynamically adjusting the 

learning rate without the need for manually setting a global learning rate.

⋅Nadam: It's a variant of Adam that combines Nesterov momentum and the Adam optimization algorithm, 

using Nesterov momentum to accelerate convergence while leveraging Adam's adaptive learning rate adjustment 
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mechanism.

3. Common CNN models

3.1. LeNet

LeNet [29] is the first successful Convolutional Neural Network (CNN) proposed by Yann LeCun in 1998. 

Its design inspiration comes from the understanding of the visual cortex in biology. LeNet was initially used to 

solve handwritten digit recognition problems and achieved success in fields such as postal code recognition and 

bank check reading. LeNet-5 is a classic CNN architecture, where the combination of convolutional layers, 

pooling layers, and fully connected layers remains a fundamental component of modern deep CNNs.

The LeNet-5 architecture consists of seven layers, containing about 60k parameters, as shown in Figure 3 

[29], and trained on the MNIST dataset. It takes input images of size 32×32. The first layer, C1, and the third 

layer, C3, are convolutional layers. In the C1 layer, six convolutional kernels are computed, each with fixed 

weights when convolving with the previous layer. When the input is a single-channel signal, the C1 layer 

contains six convolutional kernels of size 1×5×5. Considering bias, the C1 layer contains a total of (6×3×5×5 + 

6) = 156 parameters. The second layer, S2, and the fourth layer, S4, are subsampling (pooling) layers, where 

max-pooling layers mainly use spatial windows of size 2×2 and stride 2 for convolution in LeNet-5. The fifth 

layer, C5, and the sixth layer, F6, are fully connected layers, each with a fixed number of neurons, 120 and 84 

respectively. The seventh layer is the output layer, and the outputs are classified through a softmax layer.

3.2. AlexNet

In 2012, AlexNet [30], constructed by Krizhevsky et al., was introduced. This network won the ILSVR 

competition with a significant advantage, becoming the first CNN winner of the event. The training of this 

network utilized two graphics processing units (GPUs), as illustrated in Figure 4 [31], with one GPU dedicated 

to the upper part and the other to the lower part.

AlexNet consists of 8 layers, containing approximately 60 million parameters. It takes RGB images of size 

256×256×3 as input and extracts 224×224 patches for training the first convolutional layer. The first 

convolutional layer consists of 96 filters of size 11×11×3, and the second convolutional layer, processing the 

output of the previous layer, has 256 filters of size 5×5×48. The third layer employs 384 filters of size 3×3×256, 

which are connected to the fourth layer with 384 filters of size 3×3×192. The fifth layer has 256 filters of size 3×

3×192. The sixth, seventh, and eighth layers are fully connected layers. The last layer is the output layer, 

containing 1000 nodes.

Key aspects of AlexNet include the use of dropout and data augmentation to combat overfitting; switching 

the activation function from sigmoid to ReLU, which accelerated model convergence and reduced gradient 

vanishing; and having overlapping regions between adjacent pooling windows, which can improve model 

accuracy and alleviate overfitting.

Figure 3.　LeNet-5 model diagram [29].
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3.3. VGGNet

In 2014, Simonyan et al. proposed the VGG model [32], which achieved the runner-up position in ILSVR 

2014. The distinguishing feature of the VGG model is the use of many basic modules to construct the model, 

involving the consecutive use of several identical convolutional layers followed by a max-pooling layer. The 

convolutional layers maintain the height and width of the input unchanged, while the pooling layers halve them. 

Additionally, VGGNet employs many 3×3 convolutional filters, ensuring an increase in network depth and a 

reduction in model parameters compared to larger convolutional filters at the same receptive field. Finally, it 

first scales the input images to different sizes (from 256 to 512), then randomly crops them to a fixed size of 

224×224, and trains the data obtained from multiple windows together. This process is considered as scale 

jittering, which can achieve the effect of data augmentation and prevent model overfitting. VGG network has 

various layer structure models, such as VGG-16 (as shown in Figure 5 [26]).

VGGNet-16 consists of 13 convolutional layers with filter sizes of 3×3, ranging from 64 to 512 filters of 

different numbers. There are five pooling layers, all utilizing max-pooling, followed by three fully connected 

layers with 4096 nodes each, and finally an output layer containing 1000 nodes. ReLU activation function is 

used in every layer. In the convolutional layers, 3×3 filters are applied with a stride of 1. In places where max 

pooling is performed, a window size of 2×2 and a stride of 2 are used.

3.4. GoogLeNet

GoogLeNet [33] is a deep convolutional neural network structure proposed by Google in 2014. Its core idea 

is to extract image features through multi-scale convolution operations, and it introduces the Inception module 

inside the network as shown in Figure 6. The Inception module utilizes multiple convolutional kernels of 

different sizes to process the input, and then concatenates the results together: it reduces the number of input 

feature channels using 1x1 convolutional kernels to reduce computational complexity, and then performs 3x3 

and 5x5 convolutional operations. This approach can capture features of different scales, greatly increasing the 

width and depth of the network while reducing the number of parameters.

Figure 4.　An illustration of the architecture of AlexNet [31].

Figure 5.　VGG-16 network architecture [26].
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This network consists of 9 linearly stacked Inception modules, totaling 27 layers, with 5 of them being 

pooling layers. The total number of layers for the network structure is approximately 100 layers. In GoogLeNet, 

the authors noticed that using average pooling layers instead of fully connected layers can improve accuracy and 

enhance the model's generalization performance. Even with the removal of fully connected layers, dropout is 

still necessary to combat overfitting. Additionally, auxiliary classifiers are used to alleviate the vanishing 

gradient problem, and extra loss functions are introduced during training.

Google also released subsequent versions of the Inception network, namely Inception-v2, Inception-v3, and 

Inception-v4. Inception-v2 improved upon the original GoogLeNet by introducing the Batch Normalization 

technique, which applies BN layers to the network, speeding up convergence and reducing sensitivity to 

learning rates. Inception-v3 further enhanced the network structure based on Inception-v2, introducing more 

techniques such as decomposed convolution and convolutions with dimensionality reductions, thereby 

improving the efficiency and accuracy of the network. Additionally, the newly added auxiliary classifiers in 

Inception-v3 differ from Inception-v1; they are connected to intermediate layers instead of directly to the 

network's output, aiding gradient propagation throughout the network. Inception-v4 inherits the characteristics 

of the Inception module and introduces residual connections, a deeper network structure, and advanced 

optimization and regularization techniques. By improving the design and optimization of the Inception module 

internals and introducing technologies like residual connections, Inception-v4 achieves significant 

improvements in both the performance and efficiency of the network. Figure 7 [26] illustrates the overall 

architecture of InceptionV4.

3.5. ResNet

The Residual Network [34], proposed by Kaiming He et al. in 2015, achieved first place in the ILSVRC 

2015 image classification competition. ResNet is a type of deep residual network structure that addresses the 

issues of gradient vanishing and degradation in training deep neural networks by introducing residual 

connections. These connections directly add the input to the output, propagating residuals to the deeper layers of 

the network. The ResNet is primarily composed of the residual learning block, as shown in Figure 8 [34].

The design philosophy of ResNet is to focus the neural network on learning the residuals (i.e., differences) 

between the input and the target output, rather than directly learning the target output itself. In traditional neural 

networks, the main task of the network is to attempt to learn to map the input to the target output. This approach 

may lead to problems such as gradient vanishing or explosion during training, especially when the network 

becomes very deep. The introduction of ResNet aims to address these issues.

Figure 6.　Inception building block used in GoogLeNet [33].
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Specifically, each residual block in ResNet contains a residual mapping, which learns the difference 

(residual) between the input and its corresponding expected output as the learning target. In this way, the 

network can more easily learn the identity mapping, which directly maps the input to the target output, thus 

preserving more information from the original input. This design enables the network to train more effectively 

and helps to address gradient issues in training deep networks because the network only needs to learn the 

residuals rather than the complete mapping relationship.

 

Figure 7.　Overall Architecture of InceptionV4 [26].

Figure 8.　Residual learning block [34].
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The ResNet-152 architecture consists of 152 layers, utilizing 3×3 and 1×1 filters, and adopts residual 

learning, as shown in Figure 9. Kaiming He et al. set the number of layers for ResNet to be 18, 34, 50, 101, and 

152. In the architectures with 18 and 34 layers, only 3×3 filters are used, while in the architectures with 50, 101, 

and 152 layers, both 3×3 and 1×1 filters are used. As the number of layers increases, the depth, complexity, 

FLOPs (floating point operations per second), and accuracy all increase, while the training and validation errors 

decrease significantly.

Pre-activation ResNet [35] is an improved version of ResNet, proposed by Kaiming He et al. in 2016. It is 

optimized based on the traditional ResNet architecture, introducing a pre-activation structure where the order of 

batch normalization (BN) and ReLU activation function is swapped, making the network easier to train. In Pre-

activation ResNet, the structure of each residual block is transformed into BN-ReLU-Conv, Conv-BN-ReLU-

Conv. By placing BN and ReLU activation functions before the convolutional layer, the network can better 

propagate gradients, alleviating the issues of gradient vanishing and exploding. Additionally, Pre-activation 

ResNet adopts deeper network structures and utilizes more advanced optimization and regularization techniques, 

such as the Adam optimizer and Dropout, further improving the performance and generalization ability of the 

network.

3.6. SENet

SENet (Squeeze-and-Excitation Networks) [36] is a convolutional neural network architecture that 

incorporates attention mechanisms, proposed by Jie Hu et al. in 2017. The main contribution of SENet is the 

introduction of attention mechanisms into ordinary convolutional neural networks, enabling the network to 

adaptively adjust the weights of each feature map to capture important feature information more effectively. The 

structure of SENet includes two key modules: the Squeeze module and the Excitation module. The Squeeze 

module is responsible for globally compressing each feature map to transform it into a single feature descriptor, 

while the Excitation module learns the importance weights of each feature map channel and weights the feature 

maps. Specifically, a transformation Ftr :X ® U is first performed, then in the squeezing process (Ftr), the 

transformed features are passed to the squeeze process, which collaborates the feature maps and produces 

channel descriptors, generating embeddings of distributed channel feature responses with dimensions of 1×1×C, 

as illustrated in Figure 10 [36].

Figure 9.　ResNet architectures vary in depth and computational cost [34].
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3.7. EfficientNet

EfficientNet is a series of efficient convolutional neural network architectures proposed by the Google Brain 

team in 2019, aiming to improve the performance and efficiency of networks by simultaneously adjusting the 

width, depth, and resolution of the network. The design inspiration for EfficientNet comes from the model 

scaling theory, which suggests that scaling the model across different dimensions can effectively improve its 

performance.

In 2019, Tan et al. [37] proposed EfficientNetV1 by combining network structures of different scales to 

construct an efficient model. It introduces a compound coefficient φ to balance the width (w), depth (d), and 

resolution (r) of the network, thus improving performance while maintaining efficiency. This model scaling 

approach uses φ to uniformly scale the network's width, depth, and resolution, as shown below [37]:

depth :d =  αϕ

width :w =  βϕ

resolution :r =  γϕ

s.tα·β2·γ2 » 2

α ³ 1 β ³ 1 γ ³ 1 

Where α, β, and γ are constants that can be determined through a small grid search. φ is a user-specified 

coefficient used to control how much resources are available for model scaling.

EfficientNet v2 [38] is an improved version of EfficientNet v1, proposed in 2020. It further enhances the 

performance and speed of the network by optimizing the network architecture and training strategies. 

EfficientNet v2 adopts a lighter network structure and more efficient training methods, including the use of 

smaller convolutional kernels, fewer parameters, and faster training strategies, thereby further improving the 

model's performance and speed while maintaining efficiency. Additionally, EfficientNet v2 introduces a new 

training method called "Stochastic Depth," which enhances training robustness and generalization by randomly 

dropping some layers in the network, further boosting the network's performance.

4. Performance

The following Table 3 presents a performance comparison of 7 classic convolutional neural network (CNN) 

models across several widely used datasets for computer vision tasks.

Table 3.　Model Performance Comparison on Benchmark Datasets.

LeNet

AlexNet

VGGNet

GoogLeNet

ResNet

SENet

99.2%

99.79%

99.8%

99.7%

99.8%

99.8%

~90%

90.76%

92.64%

95.98%

95.83%

~96%

~65%

~75%

73.36%

78.09%

79.29%

82.55%

~40% / ~20%

42.6% / 19.6%
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Figure 10.　Squeeze-and-excitation network [36].
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EfficientNet 99.8% ~97% 91.7% 23.7% / ~6% 48.0%

Cont.

Model MNIST CIFAR-10 CIFAR-100 ImageNet (Top-1/5 Err%) COCO (mAP)

MNIST: A handwritten digit recognition dataset. The values indicate the classification accuracy (% ) 

achieved by each model. All the modern CNN models from AlexNet onwards achieve very high accuracy 

around 99.7-99.8% on this relatively simple dataset. The pioneering LeNet model also performed well with 

99.2% accuracy.

CIFAR-10/100: Object classification datasets. Again, the values represent the classification accuracy (%) on 

these datasets. There is a clear progression, with each new model architecture outperforming the previous ones 

on these datasets. EfficientNet shows the highest estimated accuracy of around 97% on CIFAR-10 and 91.7% on 

the more challenging CIFAR-100. The earliest AlexNet model lags with around 90.76% on CIFAR-10.

ImageNet: A large-scale object classification dataset. The two values are the Top-1 and Top-5 error rates 

(%), which are common evaluation metrics. Again, a pattern of steadily decreasing top-1 and top-5 error rates is 

observed from AlexNet to EfficientNet. The top-5 error rates have dropped from around 19.6% for AlexNet to 

an estimated 6% for EfficientNet. ResNet, SENet, and EfficientNet represent the current state-of-the-art on this 

very competitive benchmark.

COCO: An object detection and instance segmentation dataset. The values denote the mean Average 

Precision (mAP) score, a standard metric for object detection tasks. Only a few models have reported results on 

this complex task. EfficientNet currently has the highest mAP of 48%, followed by SENet at 40.9% and ResNet 

at 37.7%. The performance jump from ResNet to EfficientNet is quite significant.

5. Conclusion

With the development of computer vision, significant progress has been made in image classification 

technology driven by deep learning. Traditional methods relied on handcrafted feature extraction techniques and 

conventional machine learning algorithms. However, with the rise of deep learning, particularly the introduction 

of Convolutional Neural Networks (CNNs), there has been a tremendous breakthrough in image classification.

This article starts by introducing the basic structure and principles of classical neural networks, and then 

compares and analyzes the advantages and disadvantages of various convolutional network architectures. By 

providing an overview of key layers and techniques such as convolutional layers, pooling layers, activation 

functions, fully connected layers, Dropout, loss functions, backpropagation, and optimizers, readers can better 

understand the working principles and training processes of CNNs. Additionally, by briefly introducing several 

common CNN models such as LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, SENet, and EfficientNet, readers 

can learn about the characteristics and applications of different models.

In summary, CNNs, as an important technology in the field of image classification, have been widely 

applied in practice and have achieved state-of-the-art performance in many tasks [39–44]. With the continuous 

development and improvement of deep learning technology, it is believed that CNNs will have broader 

application prospects in the field of image classification.
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