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Abstract: Electric vehicles (EVs) have demonstrated significant potential for reducing greenhouse gas 

emissions, but their energy consumption and emissions are strongly influenced by external factors such as traffic 

density, road gradients, and energy grid composition. This study integrates real-world data, physical simulations, 

and machine learning models to analyze these interactions. Results show that traffic density exceeding 

400 vehicles/km² leads to a sharp increase in emissions, reaching over 150g CO ₂/km in urban areas. Urban 

driving conditions also exhibit high energy consumption at 0.22 kWh/km, compared to 0.15 kWh/km in 

highway scenarios. Steep road gradients (>15° ) significantly increase energy consumption, doubling values 

compared to flat conditions, and raise emissions by 40% in high traffic density environments. Renewable-

dominant grids, as seen in Shenzhen (75% renewable energy), reduce emissions by up to 30% compared to 

fossil fuel-reliant grids. Advanced machine learning models, including Deep Neural Networks (DNN) and Long 

Short-Term Memory (LSTM), provide accurate predictions for energy consumption and emissions, with the 

LSTM model reducing errors by 9.5% in dynamic scenarios. Real-time optimization strategies based on these 

models can achieve energy savings of up to 12% under mixed driving conditions. The findings highlight the 

critical role of traffic flow management, renewable energy grid expansion, and EV design improvements such as 

lightweight structures and regenerative braking systems for steep gradients. This research contributes actionable 

insights to enhance EV efficiency and reduce emissions, supporting sustainable transportation and urban 

development.
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1. Introduction

Electric vehicles (EVs) have emerged as a pivotal technology in addressing global climate change and 

energy challenges due to their high energy efficiency and zero tailpipe emissions. However, their true 

environmental impact remains a subject of debate when considering their entire lifecycle emissions, including 

indirect emissions from electricity generation and the dynamic factors influencing real-world fuel 

consumption [1]. Understanding and accurately estimating EV energy consumption and emissions under diverse 

conditions is crucial for advancing sustainable transportation policies and optimizing EV technologies.

In recent years, significant research efforts have been directed at improving the accuracy of EV consumption 

and emission estimation. Ziyadi et al. developed energy flow models that incorporate key vehicle parameters 
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such as mass, rolling resistance, and aerodynamics, yet their application to complex traffic conditions remains 

limited [2]. Meanwhile, machine learning techniques, such as Long Short-Term Memory (LSTM) networks, 

have demonstrated superior predictive performance by capturing multi-dimensional traffic and environmental 

data [3–5]. Furthermore, simulation platforms such as ADVISOR and Autonomie have enabled dynamic energy 

and emission analyses, supporting scenario-specific optimization [6,7]. However, these approaches often neglect 

multi-scenario interactions or fail to integrate hybrid methodologies that combine physical models with 

advanced data-driven techniques.

Despite these advances, critical gaps persist in capturing the dynamic variability of EV energy consumption and 

emissions across diverse driving scenarios. Current models frequently oversimplify the coupled relationships between 

variables such as traffic flow, terrain, and charging behavior, limiting their generalizability and applicability to real-

world contexts [8,9]. To address these limitations, this study proposes a multi-dimensional framework that integrates 

physical simulation, machine learning algorithms, and real-world data analysis. By bridging methodological gaps, 

the proposed approach aims to enhance the accuracy and scalability of EV consumption and emission estimation, 

providing actionable insights for optimizing EV infrastructure and advancing sustainable transportation strategies.

2. Methods and Experimentation

2.1. Data Collection and Preprocessing

The study utilized a comprehensive multi-dimensional dataset encompassing key factors affecting energy 

consumption and emissions. Vehicle dynamics data included parameters such as weight (W), battery capacity 

(Cb), motor efficiency (ηm), drag coefficient (Cd), and rolling resistance (Rr). Traffic flow variables covered 

average speed (vavg), traffic density (ρt), and stop-and-go frequency (fsg), sourced from real-time monitoring 

systems and GPS data. Environmental data, including temperature (T), humidity (H), wind speed (Ws), and road 

gradient (θ), were collected from meteorological and GIS sources. Charging behavior data, such as charging 

frequency (fc), grid energy mix (Prenewable, Pfossil), and peak-hour charging usage (tpeak), were aggregated from 

energy reports and charging station logs (As shown in Table 1).

Table 1.　Summary of Parameters Influencing Electric Vehicle Energy Consumption and Emissions.
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Table 1. Cont.

Dimension Parameter Unit Source
Sample Cities (Data 

Range)

Missing data were imputed using Gaussian Process Regression (GPR) for continuous variables and Markov 

Chain Monte Carlo (MCMC) methods for sequential data. For example, temperature (T) at a specific time 

window (ti) was interpolated using:

T ( ti) = μT + kT( ti - ti - 1 ) + ϵ  ϵ N (0σ 2
T )

where μT is the trend mean, kT is the coefficient, and ϵ represents stochastic noise.

2.2. Physical Simulation

The energy consumption of EVs was modeled as:

E total =Edrive +Eauxiliary -Eregen

where Edrive represents propulsion energy, Eauxiliary covers auxiliary systems such as air conditioning, and Eregen is 

regenerative braking energy. Propulsion energy (Edrive) was calculated using:

Edrive =
( )Fr +Fa +Fg × v × t

ηm

where:

Fr = Rr ×W is rolling resistance.

Fa =
1
2
× ρ ×Cd ×A × v2 is aerodynamic drag.

Fg =W × sin (θ ) is gravitational force on slopes.

Auxiliary energy (Eauxiliary) was modeled as:

Eauxiliary   =  Paux   ×  t

where Paux is auxiliary power and t is operational time. Regenerative energy (Eregen) was modeled as:

Eregen = ηr ×m × g × h

where ηr is regenerative efficiency, m is vehicle mass, g is gravitational acceleration, and h is braking height. 

Emissions (Eemissions) were derived from electricity consumption using:

Eemissions =E total × ( )P fossil ×EF fossil + Prenewable ×EFrenewable

100

where EFfossil and EFrenewable are emission factors of fossil fuels and renewables, respectively.
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2.3. Machine Learning Models

The machine learning framework combined feature engineering and predictive modeling to enhance 

accuracy and scalability. Features (X) included temporal (t), spatial (x,y), and environmental variables (T, H, θ), 

normalized for consistency. A Deep Neural Network (DNN) was designed with three fully connected layers, 

modeled as:

y = σ (W2 × σ (W1 ×X + b1 ) + b2 )
where W1, W2 are weight matrices, b1, b2 are biases, and σ is the activation function. Additionally, a Long Short-

Term Memory (LSTM) network was implemented to capture temporal dependencies, modeled as:

ht = σ (Wh × ht - 1 +Wx ×Xt + b)
where ht is the hidden state, Wh, Wx are weight matrices, and Xt is the input at time t.

Models were trained on 70% of the dataset and validated on 30%, with Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE) as evaluation metrics.

2.4. Experimental Scenarios

Experiments were conducted under three representative driving scenarios: urban, highway, and mixed 

conditions. Urban driving scenarios (e. g., Beijing and Chengdu) featured high stop-and-go frequencies 

(fsg > 10) and dense traffic (ρt > 300 vehicles/km²), with average speeds below 30km/h. Highway scenarios 

(e. g., Shanghai and Hangzhou) involved steady speeds exceeding 60km/h with lower traffic densities. Mixed 

driving scenarios (e. g., Shenzhen) incorporated dynamic transitions between urban and highway conditions, 

with varying road gradients. Key evaluation metrics included energy efficiency (kWh/km), CO2 emissions 

(g/km), and model prediction accuracy (MAE, RMSE). Data processing and analysis pipelines were automated 

using Python libraries such as Pandas, TensorFlow, and PyTorch, while simulation platforms such as ADVISOR 

and Autonomie supported physical modeling. Optimization tasks, such as parameter tuning, were conducted 

using MATLAB’s Particle Swarm Optimization (PSO).

3. Results and Discussion

3.1. Energy Consumption and Emissions Across Scenarios

The relationship between traffic density and emissions was clearly evident in this study, particularly under urban 

driving conditions characterized by frequent stop-and-go cycles. As traffic density increased beyond 400 vehicles/km², 

emissions rose rapidly, exceeding 150g CO2/km in highly congested scenarios (>700 vehicles/km2). These findings 

align with urban energy consumption patterns, where repeated acceleration and braking contributed to the highest 

energy usage, averaging 0.22 kWh/km. In contrast, highway driving demonstrated much lower energy consumption 

at 0.15 kWh/km, attributed to the relatively constant speed and minimal braking requirements. The heatmap analysis 

further highlighted regional differences, with cities like Beijing and Shanghai exhibiting significantly higher energy 

consumption than Shenzhen. This disparity is largely explained by Shenzhen’s renewable-dominant energy grid, 

with 75% renewable energy, as opposed to Beijing’s fossil fuel-reliant grid. These results reinforce the critical role 

of grid composition and traffic flow in determining energy efficiency and emissions, as also demonstrated by 

Yao et al. [10,11]. The regression plot in Figure 1 visually supports these trends, offering a quantitative basis for 

further interventions aimed at reducing emissions through improved traffic management.
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Figure 1.　Traffic Density and Emissions Correlation with City-Level Energy Consumption Heatmap.

3.2. Impact of Road Gradient on Energy Efficiency

Road gradient emerged as a key factor influencing energy consumption, especially in scenarios involving high 

traffic density. Energy consumption increased markedly when road gradients exceeded 10°, doubling on inclines 

greater than 15°. Emissions showed a similarly steep increase, rising by over 40% under these conditions. This 

outcome underscores the significant energy demands imposed by steep gradients, particularly in densely trafficked 

areas. The 3D surface plots in Figure 2 provide a detailed visualization of these effects, showing how road gradient 

and traffic density interact to exacerbate energy inefficiencies. Notably, steep roadways, such as those commonly 

found in cities like Chongqing, present a dual challenge of increased energy demands and reduced recovery efficiency 

through regenerative braking. These findings align closely with Li et al. [12], who identified steep gradients as a 

primary factor limiting EV energy efficiency in mountainous regions. This study highlights the potential of terrain-

adaptive energy recovery systems to address these inefficiencies. For instance, regenerative braking technologies 

optimized for steep slopes could recover up to 15–20% of the energy otherwise lost during braking. Such systems 

represent a valuable area for further development and deployment, particularly in cities with significant elevation 

changes.

3.3. Scenario-Specific Insights

The comparison across urban, highway, and mixed driving scenarios revealed distinct energy and emissions 

profiles. Urban driving, characterized by frequent stop-and-go cycles and dense traffic, exhibited the highest 

energy consumption and emissions. Beijing, with its fossil fuel-heavy grid and high traffic density, showed peak 

energy consumption of 0.23 kWh/km. In contrast, Shenzhen benefited from its renewable energy integration, 

maintaining lower consumption levels below 0.20 kWh/km across all scenarios. Mixed scenarios, involving 

Figure 2.　3D Surface Analysis of Traffic Density and Road Gradient Impact on Energy Consumption and 
Emissions.
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transitions between urban and highway conditions, presented a unique set of challenges. In these scenarios, steep 

gradients contributed significantly to increased energy demands, with consumption rising by up to 25% on 

inclines greater than 15° . This trend emphasizes the importance of integrating real-time terrain data into EV 

route optimization systems. Highway driving, by comparison, showed consistent efficiency, reflecting the 

benefits of steady-speed conditions with minimal acceleration and braking. These findings are consistent with 

Li et al. [13,14], who similarly noted the compounded impact of traffic density and terrain on EV performance. 

They underscore the need for adaptive strategies, including intelligent route planning and energy recovery 

systems, to optimize performance under diverse driving conditions.

3.4. Policy and Design Implications

The results of this study point to several actionable strategies for improving EV energy efficiency and 

reducing emissions. Reducing urban traffic density is paramount, particularly in high-density areas like Beijing. 

Intelligent traffic management systems, including adaptive traffic lights and congestion pricing, have the 

potential to significantly alleviate congestion and reduce emissions. The regression analysis suggests that a 20% 

reduction in traffic density could lower emissions by up to 30%, providing a clear pathway for policymakers to 

achieve meaningful environmental benefits. From a design perspective, EV manufacturers should focus on 

lightweight materials and regenerative braking technologies tailored for steep gradients. These systems could 

recover up to 20% of lost energy in hilly environments, as highlighted in the gradient analysis. Furthermore, 

expanding renewable energy adoption in urban grids remains critical. Shenzhen serves as a model in this regard, 

demonstrating how renewable-dominant grids can substantially mitigate emissions even under high energy 

demands. Infrastructure improvements, particularly in hilly cities like Chongqing, should also be prioritized. 

Smoother, low-gradient routes could reduce energy consumption by as much as 20%, according to simulation-

based projections. These recommendations align with Sun et al. [15], who emphasized the importance of 

combining grid transitions with traffic and infrastructure optimizations to enhance EV sustainability.

3.5. Integration of Machine Learning Models

The machine learning models utilized in this study provided significant insights into energy consumption 

and emissions prediction. The Deep Neural Network (DNN) model proved effective in analyzing traffic density 

and road gradient impacts, achieving a Mean Absolute Error (MAE) of 0.021 kWh/km. The Long Short-Term 

Memory (LSTM) model, designed to handle sequential data, further reduced prediction errors in mixed 

scenarios by 9.5%, showcasing its superiority in dynamic environments. These models not only offer predictive 

capabilities but also support real-time energy optimization. Onboard EV systems integrating real-time traffic 

density and gradient data could dynamically adjust propulsion strategies, reducing energy consumption by up to 

12%. The predictive accuracy demonstrated by these models aligns with Xia et al. and Nie et al. [16,17], who 

highlighted the value of machine learning in managing complex, multi-factor EV performance scenarios.

4. Conclusion

This study provides an in-depth analysis of the factors influencing energy consumption and emissions in 

electric vehicles (EVs), focusing on traffic density, road gradient, and energy grid composition. The findings 

highlight that traffic density is a key driver of emissions, particularly in urban environments where stop-and-go 

cycles significantly increase energy demands. Steep road gradients further compound these effects, amplifying 

energy consumption and emissions, especially under high-density traffic conditions. Cities with renewable-

dominant energy grids, such as Shenzhen, demonstrated significantly lower emissions compared to fossil fuel-

reliant cities like Beijing, underscoring the importance of grid composition in enhancing EV sustainability. The 

integration of advanced machine learning models, such as Deep Neural Networks (DNN) and Long Short-Term 

Memory (LSTM), provided robust predictive capabilities and actionable insights, enabling real-time 

optimization of EV performance across diverse driving scenarios.

This research offers practical recommendations for improving EV efficiency and reducing emissions. Traffic 
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flow optimization through intelligent management systems, increased adoption of renewable energy in urban 

grids, and vehicle design improvements, such as lightweight construction and advanced regenerative braking 

systems, are essential steps toward sustainability. Infrastructure enhancements, such as smoothing road gradients 

in hilly regions, can also significantly reduce energy consumption. By addressing the interplay of traffic, terrain, 

and energy systems, this study provides valuable guidance for policymakers, urban planners, and manufacturers.
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