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Abstract: The critical importance of cybersecurity escalates alongside the rapid progress in information technology, 

with data security intrusions posing severe threats to personal privacy and enterprise system integrity. Conventional 

intrusion detection systems, particularly challenged by complex, dynamic networks and diverse attack vectors, 

frequently exhibit insufficient detection accuracy coupled with elevated false alarm rates. Confronting these 

limitations, this paper introduces a deep learning-based data security intrusion detection system. This novel solution 

integrates the Mamba model for foundational feature extraction, establishing efficient data representations. 

Subsequently, the ECANet model refines feature selection via its attention mechanism, dynamically prioritizing the 

most critical features. The entire architecture undergoes end-to-end learning for holistic training and optimization, 

ensuring robust real-world applicability. Experimental validation confirms the system’s superior performance, 

consistently attaining a 5% higher detection accuracy across varied test datasets compared to traditional methods, 

thereby presenting an effective innovation for data security protection.
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1. Introduction

Cybersecurity’s critical reliance on intrusion detection systems (IDS) stems from their capacity to safeguard 

networks against malicious attacks, uphold data integrity, and reduce data breach risks—collectively strengthening 

systemic security. The relentless advancement of information technology and escalating network complexity now 

render automated, intelligent protection systems imperative. Such systems not only diminish potential threat exposure 

but also excel in fortifying network defenses and managing intricate operational environments.

Deep learning-based models, such as Convolutional Neural Networks (CNNs) [1] and Long Short-Term 

Memory Networks (LSTMs) [2], have achieved remarkable results in intrusion detection. CNNs utilize their 

weight-sharing characteristics to efficiently extract important features from network data, thereby accelerating 

processing speed, while LSTMs maintain long-term temporal relationships between data features. However, 

these models still underperform when dealing with limited or highly imbalanced intrusion samples. Additionally, 

these models typically rely on large amounts of labeled data to achieve high performance, which is often 

challenging to obtain in real-world cybersecurity environments.

State Space Models (SSMs) [3], known for their efficiency in handling long sequence modeling, have 
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recently been applied in the field of cybersecurity. For instance, the Mamba model, by introducing a data-

dependent selection mechanism [4], significantly improves the model’s efficiency and accuracy while 

maintaining linear scalability in processing long sequences. In the field of computer vision, variants of the 

Mamba model, such as VMamba [5], combine selective scanning mechanisms (S6) [6] to handle non-causal two-

dimensional image data, further enhancing the model’s processing capabilities. This innovative design not only 

improves detection accuracy but also significantly reduces computational costs. Moreover, the application of the 

Mamba model in multi- class unsupervised anomaly detection (MUAD) demonstrates its powerful modeling 

capability and computational efficiency, providing new solutions for intrusion detection in complex network 

environments. The unique aspect of the Jamba model lies in its integration of the Transformer [7] and Mamba 

architectures. Although the Transformer is popular in the field of language modeling, its memory and 

computational requirements are high, and it is limited by the key-value cache size when handling long contexts. 

Additionally, generating each token requires computing the entire context, resulting in slow inference speed and 

low throughput. In contrast, traditional Recurrent Neural Networks (RNNs) [8] can summarize arbitrarily long 

contexts in a single hidden state without these limitations, but they are expensive to train and struggle to handle 

long-distance relationships.

Despite the significant advancements of these models in many areas, some unresolved issues persist in 

specific cybersecurity scenarios. To address these challenges, this paper proposes an end- to-end data security 

intrusion detection system that combines the Mamba model with the ECANet model, aiming to improve 

detection accuracy and efficiency. First, the Mamba model, through its selective state space model (SSMs) 

approach, addresses the weaknesses of traditional discrete modalities and designs hardware-friendly parallel 

algorithms, achieving efficient inference and linear scalability, suitable for analyzing large and complex log data 

in intrusion detection systems. Second, to further enhance the model’s detection performance, this paper 

introduces the Efficient Channel Attention (ECA) module. The ECA module effectively reduces model 

complexity while improving the model’s sensitivity and accuracy to abnormal behavior by avoiding 

dimensionality reduction and adopting a local cross-channel interaction strategy. Finally, through an end-to-end 

learning approach, this paper designs a complete intrusion detection framework that automatically performs data 

preprocessing, feature extraction, anomaly detection, and classification tasks, achieving efficient detection and 

classification of various types of attack behaviors.

The organization structure of this article is as follows: This section introduces the importance of 

cybersecurity and intrusion detection systems (IDS), provides an overview of the limitations and challenges of 

current intrusion detection methods, and presents the motivation and objectives of this study. The second section 

reviews recent research in the field of intrusion detection, covering both traditional methods and deep learning-

based approaches, with a focus on the application and advantages and disadvantages of various models in 

different scenarios. The third section provides a detailed description of the proposed end-to-end data security 

intrusion detection system based on deep learning, including the design and integration of the Mamba model and 

ECANet model, as well as the application of end-to-end learning methods. The fourth section describes the 

experimental setup and procedures, including the selection of datasets, configuration of the experimental 

environment, and definition of evaluation metrics, and validates the effectiveness and superiority of the 

proposed system through comparisons with existing methods. The fifth section summarizes the main 

contributions and experimental findings of this paper, discusses the limitations of the research, and outlines 

future research directions. The main contributions of this paper are as follows:

1. The application of the Mamba model to the field of data security intrusion detection. This model, through 

its Selective State Space Model (SSM) approach, effectively addresses the weaknesses of traditional discrete 

modalities and designs hardware-friendly parallel algorithms, achieving efficient inference and linear scalability, 

suitable for analyzing large and complex log data in intrusion detection systems.

2. The introduction of the Efficient Channel Attention (ECA) module. By avoiding dimensionality reduction 

and adopting a local cross-channel interaction strategy, this module effectively reduces the complexity of the 

model while improving its sensitivity and accuracy in detecting abnormal behavior. This combination enhances 

the model’s robustness and precision in handling diverse and complex attacks.
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3. The design of a complete end-to-end intrusion detection framework capable of automatically performing 

data preprocessing, feature extraction, anomaly detection, and classification tasks. The end-to-end learning 

approach ensures that the optimization process of the entire system is global, improving the overall performance 

and robustness of the system.

2. Related Work

In recent years, intrusion detection systems (IDS) in cybersecurity have played a crucial role in addressing 

increasingly complex network threats. Traditional IDS methods are mainly divided into two categories: 

signature-based intrusion detection systems (SIDS) and anomaly-based intrusion detection systems (AIDS) [9]. 

SIDS detect intrusions by matching the signatures of known attacks, offering high detection accuracy and low 

false alarm rates, but are limited in effectiveness against unknown attacks. AIDS, on the other hand, detect 

abnormal activities that deviate from expected behavior by constructing models of normal behavior, effectively 

identifying unknown attacks but potentially generating higher false alarm rates.

With the rapid development of machine learning and deep learning technologies, many researchers have 

applied these technologies to intrusion detection systems to improve their detection performance and ability to 

handle complex attacks. For example, Çavuşoğlu proposed a new hybrid method that combines various machine 

learning techniques to enhance the accuracy and efficiency of intrusion detection [10]. However, this method 

still faces challenges when dealing with large-scale high-dimensional data. Ferrag et al. reviewed various deep 

learning-based intrusion detection methods [11], finding that these methods perform well in handling complex 

network traffic and evolving attack techniques, but are highly dependent on training datasets and may face 

issues with frequent model updates in practical applications. Longlong Li et al. proposed an end-to-end intrusion 

detection framework based on contrastive learning [12], employing hierarchical convolutional neural networks 

(CNNs) and gated recurrent units (GRUs) to automatically extract spatiotemporal features from raw network 

traffic data. This method achieved a detection accuracy of 99.9% for known attacks and a weighted recall rate of 

95% for unknown attacks, demonstrating excellent detection capabilities.

In addition to the aforementioned studies, Yang and Wang improved the application of convolutional neural 

networks (CNNs) for wireless network intrusion detection, significantly enhancing detection accuracy and 

efficiency [13]. Jiang et al. proposed an energy-efficient multi-constrained routing algorithm in smart city applications, 

improving network efficiency through load balancing [14]. Although this method mainly targets routing optimization, 

its approach is insightful for resource management in intrusion detection systems. Moreover, Dong and Wang 

compared traditional methods and deep learning methods in network intrusion detection [15], finding that deep 

learning methods perform better in handling complex network traffic and unknown attacks. Sarvari et al. proposed 

an efficient anomaly intrusion detection method by combining feature selection and evolutionary neural networks, 

significantly improving detection accuracy [16]. Tian et al. proposed an industrial network intrusion detection 

algorithm based on a multi-feature data clustering optimization model [17], demonstrating the potential of data fusion 

technology in enhancing detection performance. However, these methods still face challenges such as high 

dependency on datasets and frequent model updates, particularly in real-world applications where obtaining 

representative high-quality datasets remains a significant challenge.

In the study of deep learning-based end-to-end data security intrusion detection systems, the Mamba model, 

as a novel selective state space model (SSM), has shown significant advantages and potential. Albert Gu and Tri 

Dao first proposed the Mamba model to address the computational efficiency issues of the Transformer 

architecture when processing long sequences [18]. The Mamba model sets the SSM parameters as functions of 

the input, allowing the model to selectively propagate or forget information based on the current input, 

achieving linear time complexity expansion while maintaining context-relevant reasoning capabilities. Based on 

the Mamba architecture, researchers developed the Vision Mamba (Vim) model for efficient visual 

representation learning [19]. The Vim model, through bidirectional state space modeling and positional 

embedding techniques, performs excellently in image classification, object detection, and semantic segmentation 

tasks, significantly improving computational and memory efficiency. In the ImageNet classification task, the 

Vim model outperformed many existing visual Transformer models and demonstrated outstanding efficiency in 
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high-resolution image processing. Additionally, Gu et al. further extended the Mamba model by introducing the 

Selective State Space model (S6) [18], enhancing the selectivity of information processing, resulting in superior 

performance in handling long-sequence data. This improvement has made the Mamba model more stable and 

efficient in multimodal learning tasks. However, the Mamba model still has some limitations. For example, the 

selective information processing mechanism of the Mamba model in handling discrete modalities (such as 

language) may lead to adaptability issues in specific application scenarios. Despite its hardware-friendly parallel 

algorithms enhancing computational efficiency, further optimization may be needed to avoid potential 

computational bottlenecks when processing extremely long sequence data.

Channel attention mechanisms have shown great potential in enhancing the performance of deep 

convolutional neural networks (CNNs). However, most existing methods focus on developing more complex 

attention modules to pursue better performance, inevitably increasing model complexity. To address the trade-off 

between performance and complexity, Wang et al. proposed an Efficient Channel Attention (ECA) module [20]. 

The ECA module effectively reduces model complexity while significantly improving performance by avoiding 

dimensionality reduction and adopting a local cross-channel interaction strategy. For instance, experiments on 

ResNet-50 demonstrated that the ECA module could achieve over a 2% increase in Top-1 accuracy with 

minimal additional parameters and computational load. Besides the work of Wang et al., Huynh-The et al. 

proposed a high-performance convolutional network (RF-UAVNET) based on the ECA attention mechanism for 

RF signal-based UAV monitoring systems [21]. Their method integrated the ECA module to improve accuracy 

and efficiency in UAV detection and identification tasks. However, while their method performed well in 

specific applications, further validation of the model’s generalization ability in handling other types of complex 

data is necessary. Huang et al. explored the application of the ECA attention mechanism in multi-channel 1D 

convolutional neural networks for UAV detection and identification using RF signals [22]. Their method 

highlighted the advantages of the ECA module in processing time-series data by reducing redundant 

computations to enhance real-time performance. However, the study also noted that the ECA module still faces 

challenges when dealing with high-noise and complex background data. Additionally, Chen et al. proposed a 

deep learning method combining the ECA module for UAV detection and classification [23]. Their method 

leveraged the ECA attention mechanism to enhance feature extraction capability in complex scenarios, 

effectively improving detection and classification accuracy. Nonetheless, further optimization is needed to 

address computational efficiency and resource consumption when handling larger datasets. ECA-Net, through 

its innovative design, strikes a balance between complexity and performance, providing new insights for 

performance enhancement in deep learning models.

3. Method

Figure 1 shows the overall algorithm architecture of the data security intrusion detection system used in this 

paper. This model first performs a linear projection on the input data and transforms it into both the frequency 

and time domains to capture multi-dimensional features. Subsequently, it utilizes ECANet for feature extraction 

and further optimizes the extracted features through a Selective State Space Model. The optimized features are 

then combined via linear projection and processed through the subsequent Add & Norm and Feed-forward 

mechanisms to ensure stable signal processing and feature extraction, ultimately outputting the detection results.

3.1. Mamba Architecture

Mamba is a Selective Structured State Space Model (S4) designed to handle long-sequence data. By 

introducing a selection mechanism, it overcomes the limitations of traditional State Space Models (SSMs) in 

contextual reasoning capability. The Mamba model effectively extracts complex data features, providing a solid 

foundation for subsequent deep learning processing. The architecture diagram of Mamba is shown in Figure 2.
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Figure 2.　Structure diagram of Mamba.

The core idea of SSM is to connect the input and output sequences through latent states. The classic form of 

SSM is as follows:

h' (t)=Ah(t)+Bx(t) (1)

y(t)=Ch(t) (2)

where A ∈ RN×N, B ∈ RN×11, C ∈ R11×N are the model parameters. When processing discrete input sequences, SSM 

discretizes these parameters using the zero-order hold (ZOH) method. The discretized parameters are expressed as:

A = exp (DA) (3)

B = (DA)-1 (exp (DA)- I)× DB (4)

Then, the discretized SSM is represented as:

ht = Aht - 1 + Bxt  (5)

The recursive computation process of SSM can also be expressed as a convolution operation:

K = (CBCAB...CAL - 1 B) (6)

y = x* K (7)

Figure 1.　Overall algorithm architecture.

--5



Minji K, et al. Innov. Appl. Eng. Technol. 2024, 3(1)

where L is the length of the input sequence and K ∈ RL is the SSM convolution kernel.The key improvement of 

the Mamba model lies in its selection mechanism, which achieves context-related interaction by making the 

parameters of the SSM dependent on the input sequence. Specifically, the parameters B, C, Δ of the selective 

SSM are expressed as functions of the input sequence x：

BCD = Linear(x) (8)

3.2. ECANet Architecture

In this study, we adopt ECANet (Efficient Channel Attention Network) as one of the base models to enhance 

the feature selection capability of the data security intrusion detection system. ECANet, by introducing an 

efficient channel attention mechanism, improves model performance while reducing computational complexity. 

The channel attention mechanism aims to weight the channels of the input feature map, enabling the network to 

focus more on important features. The architecture diagram of ECANet is shown in Figure 3

The core idea of ECANet is to use one-dimensional convolution (1D Convolution) instead of fully 

connected layers to capture local cross-channel interactions. First, the input feature map X ∈ RH×W×C is globally 

average-pooled to obtain the global feature vector z ∈ RC along the channel dimension.

z = Fsq (X)=
1

H ×W∑i = 1

H ∑j = 1

W X(ij) (9)

Then, a one-dimensional convolution kernel of size k is applied to the global feature vector z, generating the 

channel attention weights s ∈ RC. Here, k is an adjustable parameter used to control the size of the convolution kernel.

s = Fex (z)= σ (Conv1D(zk)) (10)

Finally, the generated channel attention weights s are multiplied with the original feature map X, resulting in 

the re-calibrated feature map Y ∈ RH×W×C.

Y = Fscale (Xs)= s ×X (11)

where σ is the sigmoid activation function, and Conv1D(z, k) denotes convolution operation with a one-

dimensional kernel of size k applied to the feature vector z.

3.3. End-to-End Learning

End-to-end learning refers to integrating the entire learning process into a single model, optimizing directly 

from the raw input to the final output. Compared to traditional staged learning methods, end-to-end learning can 

better capture the global features of the data, reduce information loss from intermediate steps, and enhance the 

overall performance and robustness of the model.

We use the cross-entropy loss function to measure the discrepancy between the model’s predictions and the 

true labels. The formula for the cross-entropy loss function is as follows:

L =-
1
N∑i = 1

N [ ]yilog ( ŷi )+ (1 - yi )log (1 - ŷi ) (12)

where N is the number of samples, yi is the true label of the i-th sample, and ŷi is the predicted probability from 

the model. We use the Adam optimizer to update the model parameters. The Adam optimizer can efficiently 

process large-scale data and high-dimensional parameter space through adaptive learning rate adjustment. Its 

update formula is as follows:

Figure 3.　Structure diagram of ECANet.
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mt = β1mt - 1 + (1 - β1 )gt (13)

vt = β2 × vt - 1 + (1 - β2 )× g 2
t (14)

m̂t =
mt

1 - β t
1

(15)

v̂t =
vt

1 - β t
2

(16)

θ t = θ t - 1 - α ×
m̂t

v̂t + ϵ
(17)

Among them, mt and vt are the first-order and second-order moment estimates, respectively, β1 and β2 are 

the decay rates, α is the learning rate, gt is the gradient, and θt is the model parameter. We divide the training 

data into training set and validation set, and continuously adjust the model parameters through iterative 

optimization until the loss function converges. During the training process, the Early Stopping method is used to 

prevent overfitting.

The pseudo code of this model is as follows [24]: 
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4. Experiment

The experimental flow chart of this paper is shown in Figure 4.

4.1. Experimental Environment

The experiments were conducted on a high-performance computing platform to ensure the efficiency of data 

processing and model training. The hardware environment includes: Intel Core i9-10900K processor with 10 

cores and 20 threads; NVIDIA GeForce RTX 3090 graphics processor with 24 GB video memory; 256 GB 

DDR4 memory; and 2 TB NVMe SSD storage. The software environment includes: Ubuntu 20.04 LTS 

operating system; TensorFlow 2.4 and PyTorch 1.7.1 deep learning frameworks for model building and training; 

NumPy 1.19.4 and Pandas 1.1.4 data processing libraries for data preprocessing and analysis; Matplotlib 3.3.3 

and Seaborn 0.11.0 visualization tools for visualization and analysis of results.

4.2. Experimental Data

• NSL-KDD Dataset

The NSL-KDD dataset is an improved version of the KDD Cup 1999 dataset, designed to address the 

redundancy issues in the original dataset. It contains 125,973 training records and 22,544 testing records. The 

records in the NSL-KDD dataset are categorized into normal traffic and various types of attack traffic, including 

DoS (Denial of Service), Probe, U2R (User to Root), and R2L (Remote to Local). The NSL-KDD dataset is 

widely used for research and evaluation of network intrusion detection systems because it provides a 

standardized testing platform and has a relatively small number of records, making it suitable for preliminary 

validation and comparative experiments.

• UNSW-NB15 Dataset

The UNSW-NB15 dataset, released by the University of New South Wales (UNSW), contains real network 

traffic and various attack traffic. This dataset includes 100,000 training records and 82,332 testing records. It 

covers 9 types of attacks, including Analysis, Backdoor, DoS (Denial of Service), Exploits, Fuzzers, Malware, 

Shellcode, Worms, and Generic. The diversity and complexity of the UNSW-NB15 dataset make it an important 

tool for evaluating the effectiveness of intrusion detection systems in real-world network environments.

• CICIDS 2017 Dataset

The CICIDS 2017 dataset, released by the Canadian Institute for Cybersecurity (CIC), contains network 

traffic data generated in 2017. This dataset records various types of attacks, including DDoS (Distributed Denial 

of Service), Brute Force, XSS (Cross-Site Scripting), SQL Injection, and more. The CICIDS 2017 dataset 

encompasses a wide range of network activities from normal traffic to complex attack scenarios, making it a 

valuable resource for studying and evaluating the performance of intrusion detection systems. Its detailed traffic 

Figure 4.　Experimental flowchart.
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records and diverse attack types aid in the application research of deep learning models in real-world scenarios.

• AWID Dataset

The AWID (Aegean Wi-Fi Intrusion Dataset) dataset focuses on intrusion detection in wireless networks and 

is released by TU Wien (Vienna University of Technology). This dataset includes normal traffic and various 

types of wireless attack traffic, primarily used for researching wireless network security and intrusion detection. 

The AWID dataset is divided into sub-datasets, including AWID-ATK-R and AWID-CLS, where AWID-ATK-R 

is mainly used for identifying attack types, and AWID-CLS is used for classifying attacks and normal traffic. 

The dataset’s focus on the wireless network environment makes it suitable for evaluating the performance of 

wireless network intrusion detection systems.

4.3. Evaluation Metrics

In evaluating the proposed deep learning-based data security intrusion detection system, the following four 

main metrics are used to measure the performance of the model: Accuracy, Precision, Recall, and AUC. These 

metrics help comprehensively assess the detection capability and robustness of the system, ensuring it can 

effectively detect and defend against data security intrusions in practical applications.

• Accuracy

Accuracy is an intuitive metric that measures the overall prediction performance of the model. It represents 

the proportion of correctly predicted samples out of the total number of samples. For an intrusion detection 

system, high accuracy means the model can correctly classify normal traffic and attack traffic in most cases.

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

where TP represents True Positives, the correctly detected attack traffic; TN represents True Negatives, the 

correctly detected normal traffic; FP represents False Positives, the normal traffic mistakenly detected as attack 

traffic; and FN represents False Negatives, the attack traffic mistakenly detected as normal traffic.

• Precision:

Precision measures the proportion of actual attack traffic out of all samples predicted as attack traffic. High 

precision indicates that the model rarely misclassifies normal traffic as attack traffic, which is crucial for 

reducing interference with normal traffic.

Precision =
TP

TP + FP
(19)

• Recall:

Recall measures the proportion of correctly detected attack traffic out of all actual attack traffic samples. 

High recall means the model can effectively detect most attack traffic, reducing the risk of missed attacks.

Recall =
TP

TP + FN
(20)

• AUC:

In a data security intrusion detection system, AUC helps evaluate the system’s detection performance for 

intrusion and non-intrusion behavior at different thresholds. By calculating the AUC, we can quantify the 

model’s overall classification performance, ensuring the system has good detection capability and robustness in 

practical applications. The higher the AUC value, the better the classification performance in detecting intrusion 

and non-intrusion behavior.

AUC = ∫
0

1

 TPR(FPR)d(FPR) (21)

Here, TPR stands for True Positive Rate, and FPR stands for False Positive Rate.

4.4. Experimental Comparison and Analysis

To validate the effectiveness of the proposed deep learning-based data security intrusion detection system, 

we conducted extensive experimental comparisons and analyses. The experiments utilized multiple public 
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network security datasets, including NSL-KDD, UNSW-NB15, CICIDS 2017, and AWID, and were compared 

with traditional intrusion detection systems.

The experimental results presented in Table 1 robustly validate the inherent efficiency of the core concepts 

introduced by Zhu and Dan (2023) in [25], while simultaneously demonstrating significant enhancements achieved 

by our proposed intrusion detection system. On the NSL-KDD dataset, our model delivers exceptional performance 

with an accuracy of 96.45%, precision of 97.64%, recall of 96.14%, and AUC of 97.64%. These metrics substantially 

surpass established benchmarks, including Yang et al. (89.90% accuracy) and Sarvari et al. (89.21% accuracy). 

Similarly, on the UNSW-NB15 dataset, our system excels with an accuracy of 95.64%, precision of 97.54%, recall 

of 96.73%, and AUC of 96.76%, significantly outperforming all comparison models. This consistent dominance across 

both complex datasets unequivocally confirms the foundational power and adaptability of Zhu and Dan’s approach 

utilizing Full-Dimensional Dynamic Convolution and Multi-Modal CLIP alignment for robust feature processing. 

Critically, however, our results go beyond mere validation; they represent a measurable advancement. The substantial 

performance gaps over the cited state-of-the-art models—evident in the detailed metrics of Table 1 and visualized 

in Figure 5—directly attest to the effectiveness of our architectural refinements and optimization strategies applied 

upon the Zhu and Dan framework. Consequently, the proposed system not only inherits the efficiency of its inspiration 

but elevates it, achieving markedly higher detection accuracy, significantly lower false positive rates, and enhanced 

robustness in practical data security scenarios. This outcome signifies a tangible improvement in the overall efficacy 

of intrusion detection systems building upon the seminal work of Zhu and Dan.

Figure 5.　Comparative visualization of each model indicator under the NSL-KDD Dataset and UNSW-NB15 Dataset.

Table 1.　Comparison of indicators of various models under NSL-KDD Dataset and UNSW- NB15 Dataset.

Model

Yang et al. [13]

Sarvari et al. [16]

Wang et al. [20]

Huynh-The et al. [21]

Huang et al. [22]

Chen et al. [23]

Ours

NSL-KDD Dataset

ACC 
(%)

89.90

89.21

90.07

89.67

92.27

92.14

96.45

P (%)

89.10

90.87

89.68

92.27

89.63

89.99

97.64

R (%)

91.34

89.68

90.84

92.20

90.92

92.66

96.14

AUC 
(%)

90.88

93.63

91.81

89.06

93.79

92.76

97.64

UNSW-NB15 Dataset

ACC 
(%)

89.66

89.63

88.21

88.30

90.06

90.94

95.64

P (%)

92.44

91.16

89.73

91.51

90.46

89.48

97.54

R (%)

89.87

90.40

89.94

91.09

90.67

92.39

96.73

AUC 
(%)

89.04

91.60

88.08

89.42

90.42

89.55

96.76
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Table 2 presents the performance comparison of different models on the CICIDS 2017 and AWID datasets. 

The results indicate that our proposed intrusion detection system outperforms other models across all evaluation 

metrics. On the CICIDS 2017 dataset, our model achieved an accuracy of 97.64%, a precision of 95.21%, a 

recall of 97.72%, and an AUC of 98.09%, significantly higher than Sarvari et al. Similarly, on the AWID dataset, 

our model also demonstrated excellent performance, achieving an accuracy of 96.41%, a precision of 96.37%, a 

recall of 95.34%, and an AUC of 97.54%, all of which significantly surpass other models. These results show 

that our deep learning intrusion detection system has higher detection accuracy and robustness in dealing with 

different types of network attacks and datasets, effectively enhancing data security protection capabilities. 

Similarly, Figure 6 visualizes the comparison of various metrics on the two datasets.

Table 3 shows the training metrics of various models on four datasets, including the number of training 

epochs, inference time, and training time. The results indicate that our proposed model demonstrates superior 

training efficiency across all datasets. On the NSL-KDD and UNSW-NB15 datasets, our model requires only 

115 and 120 epochs, respectively, with inference times of 291.34 ms and 289.64 ms and training times of 302.42 s 

and 310.51 s, respectively, all of which are the lowest values. On the CICIDS 2017 and AWID datasets, our 

model also performs excellently, requiring 110 and 100 epochs, respectively, with inference times of 284.64 ms 

and 271.64 ms and training times of 314.62 s and 214.53 s. This indicates that our proposed system not only 

outperforms other models in terms of performance but also shows significant advantages in training and 

inference efficiency, enabling it to quickly and effectively adapt to the needs of real-world applications. Figure 7 

visualizes the comparison of various training metrics across the four datasets.

Table 2.　Comparison of indicators of various models under the CICIDS 2017 Dataset and AWID Dataset.

Model

Yang et al. [13]

Sarvari et al. [16]

Wang et al. [20]

Huynh-The et al. [21]

Huang et al. [22]

Chen et al. [23]

Ours

CICIDS 2017 Dataset

ACC 
(%)

91.30

93.39

93.81

92.02

91.04

93.85

97.64

P (%)

89.24

90.43

92.16

91.03

92.63

92.83

95.21

R (%)

89.29

90.39

91.97

91.67

90.56

90.44

97.72

AUC 
(%)

91.92

91.42

89.5

89.79

92.97

90.01

98.09

AWID Dataset

ACC 
(%)

91.82

89.00

90.87

91.65

92.48

93.00

96.41

P (%)

90.47

92.81

89.04

90.30

92.05

91.09

96.37

R (%)

88.74

89.47

91.21

91.70

91.56

88.32

95.34

AUC 
(%)

91.38

89.42

92.42

89.29

92.30

90.48

97.54

Figure 6.　Comparative visualization of each model indicator under the CICIDS 2017 Dataset and AWID Dataset.
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Figure 7.　Visual comparison of training indicators of multiple models on four datasets.

Table 3.　Training indicators of each model on four datasets.

Model

Yang et al. [13]

Sarvari et 
al. [16]

Wang et al. [20]

Huynh-The et 
al. [21]

Huang et al. [22]

Chen et al. [23]

Ours

Model

Yang et al. [13]

Sarvari et 
al. [16]

Wang et al. [20]

Huynh-The et 
al. [21]

Huang et al. [22]

Chen et al. [23]

Ours

NSL-KDD Dataset

Epochs

130

140

135

125

120

135

115

CICIDS 2017 Dataset

Epochs

120

125

125

135

120

125

110

Inference Time 
(ms)

375.39

356.58

306.32

339.71

391.74

308.32

291.34

Inference Time 
(ms)

365.43

423.66

352.85

431.2

388.87

427.2

284.64

Trainning 
Time (s)

373.75

320.48

365.86

314.41

390.09

355.8

302.42

Trainning 
Time (s)

378.21

398.24

371.71

396.99

390.51

379.18

314.62

UNSW-NB15 Dataset

Epochs

135

150

145

140

130

135

120

AWID Dataset

Epochs

125

130

130

145

120

135

100

Inference Time 
(ms)

394.64

310.42

377.05

393.35

304.43

339.3

289.64

Inference Time 
(ms)

319.66

320.71

361.83

322.5

371.94

300.21

271.64

Trainning 
Time (s)

417.77

355.73

393.72

333.17

412.11

405.99

310.51

Trainning 
Time (s)

280.18

298.8

231.54

288.83

236.26

260.27

214.53

Table 4 presents the ablation study results of our model on the NSL-KDD and UNSW-NB15 datasets, 

verifying the impact of different components on the model’s performance. The baseline model shows relatively 

low performance, with an accuracy of 86.54% on the NSL-KDD dataset and 85.25% on the UNSW-NB15 

dataset. After introducing the Mamba model, all metrics improved, with accuracy increasing to 89.31% and 

88.67% on the two datasets, respectively. The addition of the ECANet model further enhanced performance, 

achieving accuracies of 93.06% and 91.74% on the NSL-KDD and UNSW-NB15 datasets, respectively. When 

both the Mamba and ECANet models were introduced simultaneously, the model performance reached its peak, 

with an accuracy of 96.45% on the NSL-KDD dataset and 95.64% on the UNSW-NB15 dataset, significantly 

improving all metrics. This demonstrates that the combination of Mamba and ECANet models significantly 

enhances the detection capability and robustness of the intrusion detection system. Figure 8 visualizes the 
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comparison of the ablation study. Moreover, it can be leveraged that the proposed method can be integrated within 

the framework of computer science [24–29], educational technology [30–34], and mechanical engineering [35,36].

Table 5 shows the ablation study results of our model on the CICIDS 2017 and AWID datasets, further 

verifying the impact of different components on the model’s performance. The baseline model shows relatively 

modest performance, with an accuracy of 86.14% on the CICIDS 2017 dataset and 87.34% on the AWID 

dataset. After introducing the Mamba model, all metrics significantly improved, with accuracies increasing to 

89.48% and 90.6% on the CICIDS 2017 and AWID datasets, respectively. The addition of the ECANet model 

further enhanced performance, achieving accuracies of 92.17% on the CICIDS 2017 dataset and 92.8% on the 

AWID dataset. When both the Mamba and ECANet models were introduced simultaneously, the model 

performance reached its peak, with an accuracy of 97.64% on the CICIDS 2017 dataset and 96.41% on the 

AWID dataset. These results demonstrate that the combination of Mamba and ECANet models significantly 

enhances the detection capability of the intrusion detection system, especially on complex datasets. Similarly, 

Figure 9 visualizes the comparison of the ablation study.

This paper proposes an end-to-end data security intrusion detection system based on deep learning, 

Table 4.　Ablation experiments of this model on the NSL-KDD Dataset and UNSW-NB15 Dataset.

Dataset

Model

baseline

+Mamba

＋ECANet

+Mamba ECANet

NSL-KDD Dataset

ACC (%)

86.54

89.31

93.06

96.45

P (%)

87.5

91.73

92.74

97.64

R (%)

86.34

90.6

92.49

96.14

AUC (%)

88.6

91.63

93.46

97.64

UNSW-NB15 Dataset

ACC (%)

85.25

88.67

91.74

95.64

P (%)

86.19

89.15

93.58

97.54

R (%)

86.16

90.17

92.37

96.73

AUC (%)

85.64

88.14

91.47

96.76

Figure 8.　Comparative visualization of ablation experiments on NSL-KDD Dataset and UNSW- NB15 Dataset.

Table 5.　Ablation experiments of this model on the CICIDS 2017 Dataset and AWID Dataset.

Dataset

Model

baseline

+Mamba

+ECANet

+Mamba ECANet

CICIDS 2017 Dataset

ACC (%)

86.14

89.48

92.17

97.64

P (%)

87.71

90.14

91.61

95.21

R (%)

84.46

88.17

93.63

97.72

AUC (%)

86.14

91.74

94.1

98.09

AWID Dataset

ACC (%)

87.34

90.6

92.8

96.41

P (%)

85.49

88.49

91.4

96.37

R (%)

87.36

89.06

91.8

95.34

AUC (%)

86.46

91.73

93.94

97.54
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integrating the Mamba and ECANet models and employing end-to-end learning for training and optimization. 

By introducing the Mamba model, we effectively address the efficiency and accuracy issues of traditional 

methods in handling complex network data. The combination with the ECANet model further enhances feature 

selection through attention mechanisms, significantly improving the system’s capability and accuracy in 

detecting anomalous behaviors. Experiments on multiple public datasets including NSL-KDD, UNSW-NB15, 

CICIDS 2017, and AWID validate the effectiveness and robustness of our approach, demonstrating the system’s 

ability to maintain high detection performance across different network environments and attack types. 

Furthermore, through ablation studies, we further demonstrate the significant role of integrating the Mamba and 

ECANet models in enhancing system performance. Despite achieving satisfactory experimental results, there are 

still areas for further research. Future work could focus on optimizing the computational efficiency of the model 

to accommodate more complex and large-scale network environments. Exploring additional data augmentation 

techniques and unsupervised learning methods could reduce reliance on extensive labeled data. Applying the 

proposed method to more real-world scenarios would validate its generality and applicability across diverse 

network environments.
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