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Abstract: Optical Character Recognition (OCR) has revolutionized document processing by converting scanned 

documents, PDFs, and images captured by cameras into editable and searchable text. This technology is crucial 

for digitizing historical documents, streamlining data entry processes, and improving accessibility for the 

visually impaired through text-to-speech technologies. Despite its widespread application, OCR faces significant 

challenges, especially in accurately recognizing text in noisy or degraded images. Traditionally, OCR systems 

have treated noise reduction and character classification as separate stages, which can compromise the overall 

effectiveness of text recognition. Our research introduces a groundbreaking Multifunctional End-to-End Model 

for Optical Character Classification and Denoising, which integrates these functions within a unified framework. 

By employing a dual-output autoencoder, our model concurrently denoises images and recognizes characters, 

thereby enhancing both the efficiency and accuracy of OCR. This paper outlines the model's development and 

implementation, explores the interplay between denoising and classification, and presents compelling 

experimental results that demonstrate marked improvements over conventional OCR methods.
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1. Introduction

Optical Character Recognition (OCR) is a transformative technology in the digital text processing 

landscape, enabling the conversion of various types of documents—such as scanned paper documents, PDFs, or 

images captured by cameras—into editable and searchable data [1–3]. At its essence, OCR systems recognize 

and digitize characters in an image, converting them into a machine-readable text format. This technology has 

permeated numerous fields, including the digitization of historical documents, automation of data entry, and 

enhancement of accessibility for visually impaired individuals through text-to-speech systems. Moreover, 

advances in related fields, such as autonomous system optimization, directly contribute to enhancing the 

efficiency and accuracy of OCR technology [4]. The significance of OCR lies in its ability to dramatically 

reduce the manual labor involved in data entry while enhancing the accuracy and efficiency of information 

retrieval. For example, in libraries and archives, OCR facilitates the digital preservation of texts, making them 

easily accessible and searchable. Similarly, in biochemical analysis research, OCR efficiently and accurately 

processes and analyzes large volumes of data, thereby advancing the progress of precise biochemical 
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experiments [5, 6]. In the business realm, it streamlines processes such as invoice processing and receipt 

management, enabling quicker and more reliable extraction of information. Moreover, in the field of midinfrared 

photodetectors, such as those involving surface plasmon polariton graphene with multifrequency resonance, 

OCR aids in the management of vast amounts of data, ensuring that critical information is readily available 

when needed [7].

Despite its widespread applications and advancements, OCR technology still faces significant challenges. 

Chief among these is the accurate recognition of text in noisy or degraded images. Noise in images can arise 

from various sources, including poor lighting conditions, low-resolution scanning, or the presence of extraneous 

marks and stains on documents. Such noise can severely impact the performance of OCR systems, leading to 

errors in character recognition and ultimately compromising the reliability of the extracted text. To address these 

challenges, considerable research has focused on developing techniques for both text classification and image 

denoising. Text classification in OCR involves identifying and categorizing characters based on their visual 

features, while image denoising, enhanced by methods like semantic wireframe detection, aims to remove or 

reduce noise in images to improve the clarity and readability of the text [8]. Various methods, including deep 

learning models, have been employed to tackle these tasks independently due to their excellent performance in 

many tasks [9–15].

However, a notable gap exists in the current body of research: the integration of classification and denoising 

into a single, unified model. Most existing approaches treat these tasks separately, applying denoising 

techniques as a preprocessing step before feeding the cleaned images into classification models. This separation 

can lead to suboptimal performance, as the interdependencies between noise reduction and character recognition 

are not fully leveraged. For instance, an effective denoising process could remove features critical for accurate 

classification, while a classifier might misinterpret residual noise as part of the character structure.

Recognizing these limitations, our work proposes a novel approach: a Multifunctional End-to-End Model 

for Optical Character Classification and Denoising. This model aims to seamlessly integrate the denoising and 

classification processes, allowing for a more holistic and efficient approach to OCR. By building on the 

architecture of autoencoders, which are well-suited for denoising tasks, and enhancing them with classification 

capabilities, we seek to create a model that can simultaneously learn to clean noisy images and accurately 

recognize characters. The key innovation in our model lies in its dual-output structure, where the encoder 

extracts relevant features from the input images, and the decoder performs the denoising while a parallel 

classifier interprets the encoded features for character recognition. This design not only ensures that both tasks 

are optimized in tandem but also allows for the mutual reinforcement of denoising and classification objectives. 

The autoencoder's ability to reconstruct clean images provides a robust basis for the classifier, while the 

classifier's feedback helps refine the denoising process to preserve essential character details.

This paper is structured as follows: Section 2 details the related works on optical character classification and 

denoising shown in Figure 1. Following that, Section 3 provides the workflow of the proposed method in this 

study. The experimental results and corresponding discussion are presented in Section 4. Finally, Section 5 

offers a comprehensive conclusion of this paper.

Figure 1.　The general framework of deep learning-based Optical Character Classification and Denoising.
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2. Literature Review

2.1. Optical Character Prediction

In terms of optical character detection and classification, many machine learning-based works have been 

carried out before since such performance have been demonstrated in many other studies [16–24]. For instance, 

Yi et al. developed a motion-based algorithm to identify text in cluttered environments, utilizing a method where 

the user shakes a hand-held object to detect interest points [25]. They employed Background Subtraction (BGR) 

to separate the moving object from the stationary background and trained the text classifier using the AdaBoost 

learning model [26]. Bai et al. introduced the Shared-Hidden Layer Deep Convolutional Neural Network (SHL-

CNN), which reduces character recognition errors by 16-30% when trained for a single language and can be 

adapted for multilingual use [27]. Patil et al. and Shrivastava et al. detailed the phases in Optical Character 

Recognition, dividing the process into Image Processing and Recognition [28, 29]. P. Satyanarayana et al. 

researched assistive technologies for the blind, organizing the process into training, testing (classification using 

KNN), and text-to-speech conversion, with Raspberry Pi as the hardware interface [30]. Li et al. experimented 

with detecting text lines in handwritten documents by blurring the image horizontally multiple times, 

thresholding to connect words, and then grouping the thresholder image [31].

Shiravale et al. designed a segmentation technique that effectively separates the foreground from the 

background to enhance classification outcomes [32]. They employed a convolutional neural network encoder-

decoder model to segment the background text, which was then recognized by the Tesseract OCR. Spyros et al. 

developed a meta-model known as the denoising autoencoder (DAE), which underwent Gaussian noise 

randomization as part of its graph neural network (GNN) architecture [33].

Several prior studies have also considered the denoising of optical character to further improve the 

performance. Ibrar et al. utilized nested denoising autoencoders, training them on multiple classes of ligatures 

from a noise-free Urdu printed text image (UPTI) dataset [34]. The trained network was then tested on a 

degraded version of the UPTI dataset, demonstrating accuracy between 93% and 96%. This performance 

surpasses that of traditional OCR methods for extensive ligature datasets. Alamsyah et al. focused on developing 

an autoencoder to denoise text images and evaluating the OCR performance in converting these denoised 

images into text [35]. Their research began with testing OCR on original and Gaussian noise-added text images. 

They then sought to optimize the autoencoder model by examining the effects of dataset size and optimizer type 

on denoising effectiveness. The culmination of their work involved evaluating OCR accuracy on text images 

denoised by the optimal autoencoder model. The study revealed that dataset size significantly impacts both 

denoising and OCR performance, with the autoencoder trained on a dataset size of 40 yielding the best results.

Although there has been significant progress in the fields of optical character classification and denoising, a 

notable gap remains in the current research: the integration of classification and denoising into a unified model. 

Most existing methods treat these tasks separately, using denoising as a preprocessing step before the cleaned 

images are processed by classification models. This separation may result in suboptimal performance due to the 

lack of full utilization of the interdependencies between noise reduction and character recognition. For example, 

a thorough denoising process might eliminate features essential for accurate classification, whereas a classifier 

could misconstrue residual noise as elements of the character structure.

3. Method

3.1. Dataset Preparation

In our study, the data utilized originates from Kaggle, a renowned platform for data science competitions, 

where users can find and publish datasets, explore and build models in a web-based data-science environment, 

and collaborate with other data enthusiasts. The dataset was generated using 3475 font styles available in 

Google Fonts, with each alphanumeric character (uppercase, lowercase, and numerals) produced in each font 

style and organized in a directory, totaling 2.1 lakh images across 62 classes. To balance performance and task 

complexity, we selected only 10 categories, specifically the digits 0-9. Each image is in grayscale, and the final 

dataset for training consists of 31, 257 images. These images were resized to 28x28 and normalized. 
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Normalization improves model training efficiency and helps in faster convergence by scaling the pixel values to 

a range, typically 0 to 1. The dataset was then split, with 80% used for training and 20% for testing. Some 

sample images collected are shown in Figure 2.

To simulate the presence of noise in our images, we introduced Gaussian noise to both the training and 

testing datasets. This was done by adding noise with a mean of 0.0 and a standard deviation of 1.0, scaled by a 

noise factor of 0.1. By adjusting the noise factor, we controlled the intensity of the noise added to the images. 

This method allows us to create a more realistic scenario where the images are affected by typical disturbances, 

helping to train our model to be robust against such variations. Some sample noised images are provided in 

Figure 3.

3.2. The Introduction of Deep Learning Models

3.2.1. CNN

Convolutional Neural Networks (CNNs) have revolutionized the field of computer vision and image 

processing [36–40], offering unparalleled accuracy in tasks such as image classification, object detection, and 

segmentation. This type of neural network is distinctively designed to automatically and adaptively learn spatial 

hierarchies of features, from low-level edges and textures to high-level patterns and object classes, through a 

series of convolutional layers.

The architecture of a CNN typically involves multiple layers, each playing a critical role in the extraction 

and transformation of features. The initial layers often consist of convolutional layers that apply various filters 

to the input image or feature maps from preceding layers. These filters are small but extend through the full 

depth of the input volume and are designed to capture basic features such as edges and simple textures. As the 

information progresses through the network, the layers become more adept at identifying complex patterns by 

combining the simpler features extracted by earlier layers. One of the significant advantages of CNNs is their 

ability to preserve the spatial relationship between pixels by learning image features using small squares of input 

data. This is unlike traditional neural networks that fully connect each neuron in one layer to every neuron in the 

next layer, leading to a drastic reduction in the number of parameters, which significantly enhances 

computational efficiency. This feature-sharing property allows CNNs to be deeper with fewer parameters 

compared to fully connected networks of the same size, enabling more complex and effective models to be 

trained.

Moreover, CNNs have been adapted for use in other domains beyond image processing, such as time series 

analysis, natural language processing, civil engineering and audio synthesis [41 – 43]. Additionally, OCR and 

federated learning models have advanced fields like cardiovascular medicine by identifying crucial amino acid 

residues in proteins and improving the estimation of tail risk measures in finance through approaches to extreme 

Figure 2.　The sample images of the collected dataset.

Figure 3.　The sample noised images of the collected dataset.
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value mixture modeling, respectively, demonstrating AI's broad impact across diverse scientific disciplines [44,

45]. In conclusion, the development of Convolutional Neural Networks (CNNs) marks a significant milestone in 

machine learning, combining architectural innovation with exceptional performance to tackle diverse digital 

challenges. Concurrently, research in distributed file systems has enhanced CNNs' potential in managing and 

optimizing complex data systems, reinforcing their capabilities in solving intricate problems.

3.2.2. Denoising Autoencoder

Denoising autoencoders are a transformative development in neural network technology [46], particularly 

adept at removing noise from data. These advanced autoencoders enhance model robustness and generalization 

by training them to recover pristine data from its noisy counterpart. By focusing on essential data features and 

disregarding extraneous noise, denoising autoencoders elevate performance across diverse tasks, including 

image restoration, signal processing, and anomaly detection.

Structured similarly to traditional autoencoders, denoising autoencoders consist of an encoder and a decoder. 

The encoder compresses the input into a condensed latent representation, capturing key data features, while the 

decoder reconstructs the data from this compressed state. However, denoising autoencoders introduce a twist: 

the input is intentionally contaminated with noise before being processed by the encoder. The model's training 

objective is to reconstruct the original, clean data from this corrupted input, compelling the autoencoder to 

distinguish between signal and noise.

The primary advantage of denoising autoencoders lies in their enhanced tolerance to input variations and 

perturbations. Trained with noisy data, these models excel at identifying and preserving the underlying data 

structure, even amidst significant noise. This attribute is invaluable in real-world scenarios where data is 

frequently imperfect, marred by photographic noise, sensor errors, or transmission disturbances.

3.3. Multifunctional End-to-End Model for Optical Character Classification and Denoising

In the proposed structure, the model integrates a denoising autoencoder with a classification component 

shown in Figure 4, allowing simultaneous output of denoised images and classification results. The architecture 

begins with the input image passing through convolutional layers with 32 filters of size 3x3 and ReLU 

activation, maintaining the spatial dimensions with same padding. This is followed by a max pooling layer that 

reduces the spatial dimensions while preserving essential features. The process is repeated with another set of 

convolutional layers, this time with 16 filters, and a subsequent max pooling layer to further compress the 

feature representation into a lower-dimensional encoded state. From this encoded state, the architecture branches 

off into two paths. The first path reconstructs the denoised image by using convolutional layers, starting with 16 

filters and a ReLU activation, and then up-sampling to increase the spatial dimensions. This is followed by 

another convolutional layer with 32 filters and a final up-sampling step to match the original input dimensions. 

The reconstructed denoised image is produced by a convolutional layer with a single filter and a sigmoid 

activation, ensuring the output is in the same format as the input image. The second path focuses on 

classification. It begins by flattening the encoded representation to transform it into a vector. This vector is then 

processed by a dense layer with 128 units and ReLU activation to capture high-level features. The final output 

for classification is obtained through a dense layer with a number of units corresponding to the number of 

classes, using a softmax activation to provide probabilities for each class.

The training process optimizes both the denoising and classification tasks simultaneously by minimizing 

their combined loss functions. This integrated approach allows the model to leverage shared representations for 

both denoising and classification, potentially enhancing the performance of each task by learning from the 

synergies between them.
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Figure 4.　The architecture of the proposed autoencoder model combined with classification module.

3.4. Implementation Details

In this model configuration, the Adam optimizer is chosen for its efficiency in handling sparse gradients and 

adapting learning rates, which is particularly beneficial for convergence in complex models like this one. The 

loss function for the denoising part, measured by mean squared error (MSE), quantifies the difference between 

the original and the denoised images, encouraging the model to accurately reconstruct noise-free images. For the 

classification part, sparse categorical cross entropy is used, which allows the model to compute the loss directly 

without needing to convert the labels into a one-hot encoded format, simplifying the data preprocessing steps 

and enhancing computational efficiency. The losses from both the denoising and classification tasks are 

weighted equally, each contributing 50% to the total loss shown in equation (1). This balanced approach ensures 

that the model gives equal importance to both tasks during training, optimizing the shared features to perform 

well on both denoising and classification. The accuracy metric is applied to the classification output to monitor 

the model's performance in correctly predicting the class labels. During training, the model processes data in 

batches of 256 examples, which promotes efficient memory usage and expedites computation compared to 

handling individual samples. The training spans 50 epochs, providing ample iterations for the model to learn and 

refine its parameters, optimizing performance across both denoising and classification tasks. By shuffling the 

training data before each epoch, the model is prevented from learning any inherent order in the data, thereby 

enhancing its ability to generalize. Validation occurs with the noisy test set and its corresponding clean images 

and labels, offering a continuous evaluation of the model's performance on unseen data throughout the training 

process.

Ltotal = 0.5 LMSE + 0.5 LCrossentropy (1)

4. Results and Discussion

4.1. The Performance of the Classification

The training performance of the model is effectively captured through three key graphs, each demonstrating 

significant insights into the model’s learning dynamics. The first graph shown in Figure 5, illustrating the total 

loss, shows a sharp initial decline followed by a more gradual decrease over successive epochs. This steep initial 

drop indicates the model’s rapid adaptation to the major patterns within the dataset, thereby significantly 

improving its predictive capabilities from the outset. As training progresses, the reduction in loss slows, 

suggesting that the model is fine-tuning its parameters to capture more subtle features in the data.

The second graph shown in Figure 6 displays the classification loss, which follows a similar trajectory to the 

total loss—characterized by a sharp decline early in training and leveling off to a steadier, slower decrease. This 

pattern underscores the efficiency of the classification component of the model, which quickly learns to 
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distinguish between different classes and incrementally refines its predictions as training advances.

The third graph shown in Figure 7, depicting the classification accuracy, shows a rapid increase to high 

levels early in the training process, eventually stabilizing above 90%. This swift improvement in accuracy 

demonstrates the model's capability to effectively learn and adapt to the classification task, achieving and 

maintaining high accuracy consistently throughout the training.

The results presented in Table 1 and Figure 8 demonstrate the high classification performance of the 

proposed model on the testing dataset. According to Table 1, the model achieves an accuracy of 93.17%, with 

similarly high precision and recall scores, both at 93.87%. The F1 score, which is a harmonic mean of precision 

and recall, also stands impressively at 93.80%, indicating a well-balanced model that efficiently manages the 

trade-off between precision and recall.

Figure 5.　The total loss curve of the proposed model during the training.

Figure 6.　The classification loss curve of the proposed model during the training.

Figure 7.　The classification accuracy curve of the proposed model during the training.
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Figure 8 provides a detailed view of the model's performance across individual classes through the 

confusion matrix. This matrix shows the number of predictions for each class compared to the true labels. For 

most classes, the diagonal elements, which represent the number of correct predictions, are significantly higher 

than the off-diagonal elements, suggesting that the model has a high rate of correct classifications for each class. 

For instance, the model correctly predicted the class '0' 625 times, whereas misclassifications for this class are 

relatively low, indicating strong recognition capability. The confusion matrix also reveals some areas of 

confusion between specific classes, although these instances are relatively few. For example, class '9' was 

occasionally confused with class '7', as indicated by 16 misclassifications. However, these numbers are small 

compared to the correct predictions, underscoring the model's overall effectiveness.

4.2. The Performance of the Denoising

Figure 9 presents the reconstruction loss curve of the proposed model during the training. Initially, the graph 

demonstrates a sharp decrease in loss, dropping from around 0.07 to below 0.02 within the first few epochs. This 

rapid decline indicates that the denoising model quickly adapted to the major features required for noise 

reduction in the data, achieving significant improvements in reconstructing the clean data from noisy inputs 

early in the training process. After this initial steep decrease, the reconstruction loss levels off and stabilizes, 

maintaining a value just above 0.01 for the remainder of the epochs. The flattening of the curve suggests that the 

model reached a point of diminishing returns where further improvements in learning the noise characteristics 

and reconstructing the clean data became incremental. The low and stable reconstruction loss after the initial 

drop reflects the model's effectiveness in denoising, with the fine-tuning phases solidifying the gains in noise 

reduction capabilities.

Table 1.　The classification performance of the proposed model in testing dataset.

Metrics

Accuracy

Precision

Recall

F1 score

Value

0.9317

0.9387

0.9383

0.9380

Figure 8.　The confusion matrix based on the proposed model.
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Some sample denoised images are provided in Figure 10. The denoising performance of the model is 

outstanding, effectively restoring images to a quality that closely matches the originals. This exceptional ability 

to reduce noise while preserving the critical details and characteristics of the original images highlights the 

robust denoising capabilities of the autoencoder. These results not only confirm the effectiveness of the 

autoencoder in eliminating noise but also demonstrate its practical utility in scenarios where maintaining the 

integrity of the original data is essential.

4.3. Discussion

The experimental results clearly demonstrate that integrating denoising and classification tasks within a 

single autoencoder model is not only feasible but also highly effective. This dual-task approach allows the 

model to leverage shared representations, which enhances learning efficiency and performance across both 

tasks. The training curves, as depicted in Figures 5 through 7, reveal a rapid initial decrease in both total and 

classification losses, indicating that the model swiftly adapts to the key features of the dataset. This quick 

learning phase is critical as it shows the model’s ability to grasp essential patterns that contribute to both 

denoising and classification effectively. Despite these promising results, there are inherent limitations to 

consider. The performance of the model is highly dependent on the quality and variety of the training data. In 

scenarios where the data diversity is limited or if the noise patterns are highly irregular, the model might not 

generalize well to unseen data types or noise levels. Additionally, the computational demand of simultaneously 

optimizing for denoising and classification can be significant, potentially limiting the model's scalability or 

efficiency when deployed in resource-constrained environments. Future research could explore more dynamic 

training strategies that adaptively weigh the loss contributions from denoising and classification tasks to further 

enhance model performance. Investigating the impact of different types of noise and more complex 

classification tasks might also provide deeper insights into the model's capabilities and limitations. Expanding 

the model's robustness to handle a broader range of noise patterns and data variations will be crucial for its 

adoption in more diverse real-world applications. In addition, the hardware conditions can be also further 

improved using some new technologies [47–53].

5. Conclusion

The integration of denoising and classification tasks within a unified autoencoder model has been notably 

Figure 9.　The reconstruction loss curve of the proposed model during the training.

Figure 10.　The sample denoised images provided by the autoencoder.
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successful. Our model not only showcases its viability but also delivers significant enhancements in OCR 

performance, processing noisy images efficiently while ensuring high accuracy in character recognition. The 

experimental results affirm the model's robust performance, highlighted by exceptional accuracy, precision, and 

recall, culminating in a balanced F1 score of 93.80%. However, the effectiveness of the model is contingent on 

the quality and diversity of the training data, and it places considerable demands on computational resources. 

Future efforts should aim to improve the model’s ability to adapt to various noise patterns and develop dynamic 

training approaches that more effectively fine-tune both denoising and classification tasks. Enhancing the 

model's robustness and scalability is essential for its application in more diverse real-world environments, 

positioning it as a more adaptable tool in the realm of digital processing.
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