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Abstract: Motor bearings are essential components in various industrial and transportation systems, vital for 

minimizing friction and enhancing machinery longevity. Failures in these bearings can lead to extensive 

machine downtime and significant repair costs, thereby emphasizing the need for effective predictive 

maintenance strategies. This paper focuses on leveraging advancements in Machine Learning (ML) and 

Artificial Intelligence (AI) to preemptively identify and rectify potential bearing failures, transitioning from 

traditional periodic maintenance to more efficient, condition-based approaches. We introduce a novel domain 

adaptation technique using Correlation Alignment (CORAL) to improve the accuracy of fault predictions across 

different operational settings. This method effectively minimizes the statistical disparities between training and 

operational data, enhancing the adaptability and effectiveness of predictive models. The results indicate that 

models equipped with domain adaptation outperform traditional models, particularly in their ability to generalize 

across diverse environments, thereby supporting more reliable and efficient predictive maintenance practices. 

This research contributes to the ongoing evolution of maintenance strategies in industrial settings, highlighting 

the potential of AI to transform traditional practices by reducing unexpected downtime and optimizing 

maintenance schedules.
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1. Introduction

Motor bearings are important components in the machinery of various industrial and transportation systems [1,2], 

playing a critical role in improving smooth operations and extending the lifespan of these systems. Their primary 

function is to reduce the friction between moving parts, ensuring that machinery operates at optimal levels of 

efficiency. However, bearing failures can lead to significant machinery breakdowns, necessitating costly repairs and 

causing extensive downtime, which can adversely affect practical industrial applications such as chemical processing 

and transportation [3,4]. Therefore, the ability to predict and address potential bearing faults is highly advantageous 

for maintaining operational reliability and efficiency.

Motor bearing failures can occur due to a range of issues, including wear and tear, insufficient lubrication, 

contamination by foreign substances, or mechanical misalignment. Each of these factors can degrade bearing 
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performance and, if left unchecked, lead to failures that disrupt operations and pose safety risks. The 

consequences of such failures are not minor; they can severely impact the production processes and safety 

protocols of facilities that depend heavily on motor-driven machinery. Thus, predictive maintenance, which 

focuses on predicting failures before they occur, has become an indispensable strategy in industrial operations. 

This proactive approach replaces traditional periodic maintenance schedules with maintenance actions that are 

precisely timed based on the actual condition of the equipment.

The advent of Machine Learning (ML) and Artificial Intelligence (AI) [5–7] has revolutionized in many 

domains. For example, Xiong et al. proposed an ensemble model of attention mechanism-based DCGAN and 

autoencoder for effective noised OCR classification [8]. Traditional methods, which often relieve simple 

statistical tools and manual inspections used in many studies [9 – 11], are increasingly being replaced by 

sophisticated AI-driven models. These models are capable of analyzing large datasets collected from sensors 

monitoring machine conditions, such as temperature, vibration, and acoustics. By using historical data, these 

models learn to identify patterns and anomalies that precede mechanical failures. This capability allows them to 

provide early warnings of potential bearing faults, enabling timely interventions that can prevent costly 

breakdowns and enhance machine longevity.

Despite the advancements in AI technologies [12–14], applying these models across different machines or 

operational environments presents significant challenges. Specifically, the variability in data due to different 

operating conditions, machine types, or environmental factors can lead to substantial performance declines when 

models trained in one domain are applied to another. This issue of data variability and model performance under 

different conditions is known as the problem of distribution shifts. To overcome this, domain adaptation 

techniques are employed, which are designed to enable AI models to adapt from one domain (the source 

domain) to another (the target domain).

Domain adaptation is particularly critical in the context of motor bearing fault prediction [15–17]. It can 

address the issue where models developed and trained under specific sets of conditions fail to generalize well 

across other conditions that exhibit different data characteristics [18]. This technique involves adjusting the 

model or its training process so that it can effectively handle data from different domains, thereby improving its 

accuracy and reliability across diverse operational settings.

This article introduces a novel approach to domain adaptation shown in Figure 1 for enhancing the 

prediction accuracy of motor bearing failures. The first step in our proposed method involves segmenting the 

dataset into different clusters using the k-means clustering algorithm. This segmentation is based on the premise 

that each cluster represents distinct data distributions. Following this, a source domain is selected—one that is 

rich in labeled data and representative of typical operational conditions. The next phase involves aligning the 

data distributions between the source domain and other clusters using a technique known as Correlation 

Alignment (CORAL). CORAL minimizes the statistical differences between the source and target distributions, 

effectively making the model more adaptable and robust to changes in data characteristics across different 

domains. Once the domain adaptation is accomplished, the refined datasets serve as training material for several 

machine learning models, including K-Nearest Neighbors (KNN), Random Forest, and Decision Trees. These 

models are selected for their ability to handle classification tasks effectively and are applied to predict the 

likelihood of bearing failures. The performance of these models, both with and without domain adaptation, is 

evaluated to assess the impact of our adaptation technique. We anticipate that models trained with domain-

adapted data will exhibit superior performance, demonstrating enhanced generalizability and robustness 

compared to models trained on non-adapted data.
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Figure 1.　The process of the proposed motor bearing failures detection method using CORAL-based domain 
adaptation.

2. Literature Review

2.1. Bearing Failures Detection

Recent literature on bearing fault diagnosis demonstrates a growing focus on the application of advanced 

machine learning techniques used in many studies [19–21] to improve detection accuracy. For instance, Wang et 

al. explored the use of wavelet packet transform combined with sparse representation theory to enhance fault 

feature extraction in rolling element bearings [22]. Similarly, Han et al. developed a multiscale convolutional 

neural network that leverages data augmentation to improve the robustness of bearing fault diagnosis 

systems [23]. Another critical area of research is the adaptation of models to varying conditions. Zhang et al. 

proposed a sparse decomposition-based method for bearing fault diagnosis that adapts to different operational 

conditions, addressing the challenge of varying data distributions [24]. Additionally, Sharma et al. emphasized 

the use of nonlinear dynamic analysis using Higuchi’s fractal dimension to detect defects in rolling element 

bearings, highlighting the importance of sophisticated analytical techniques in the diagnosis process [25]. These 

studies underscore the integration of complex data processing techniques and machine learning models to 

address the dynamic challenges in bearing fault diagnosis.

2.2. Domain Adaptation

Despite progress in AI technologies [26,27], deploying these models across diverse machines or operational 

contexts remains a considerable challenge. Domain adaptation is then considered to solve these issues. Pan et al. 

categorize transfer learning based on domain and task variations into three types: inductive, transductive, and 

unsupervised [28]. Inductive involves different tasks, possibly with the same domain, requiring some labeled 

target data. Transductive has the same tasks across domains but uses labeled source data and some target 

domain’s unlabeled data to learn its distribution. Unsupervised transfer has different tasks and domains, with no 

labeled data, relying on entirely unlabeled sets.

In domain adaptation, methods are split into shallow and deep techniques. Shallow strategies, such as 

instance-based and feature-based adaptations [29 – 31], use metrics like maximum mean discrepancy [32], 

Wasserstein metric, correlation alignment [33], and others to minimize domain differences. Deep adaptation 

employs neural networks with architectures like convolutional, autoencoder, or adversarial, integrating distance 

metrics to address discrepancies in feature representation across domains.

3. Method

3.1. Dataset Descrption and Preprocessing

The dataset used in this study, provided by Case Western Reserve University through its Bearing Data 

Center, aims to support the application of machine learning in predictive maintenance of industrial machinery. It 

is particularly focused on motor bearing fault detection and classification using telemetry from mechanical 
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components under specific test conditions. The motor specifications are 2 HP motor with defects introduced via 

EDM machining at points with diameters of 0.007 inches, 0.014 inches, and 0.021 inches. The Measurement 

tools are Torque transducer, dynamometer, and control electronics. The dataset contains time-series data 

segmented into 2048-point intervals (approximately 0.04 s at the 48 kHz sampling rate). Nine features are 

calculated for these segments, including maximum, minimum, mean, standard deviation, RMS, skewness, 

kurtosis, crest factor, and form factor, which are essential for identifying potential faults. The dataset serves to 

diagnose faults specifically in three parts of the bearing: the ball, inner race, and outer race. The distribution of 

features and the target variable are plotted in Figures 2 and Figure 3. It can be found that each category in the 

target variable has the same number that equals to 230.

During the data preprocessing phase of our research, we initially converted both categorical features and the 

target variable into numerical formats via one-hot encoding. Subsequently, we standardized the feature values 

using min-max normalization to ensure uniformity in scale across all variables, thereby aiding in the 

Figure 2.　The distribution of features.

Figure 3.　The distribution of target variable.
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effectiveness and speed of our model training process. To address the need for domain adaptation, we segmented 

the motor bearing data into distinct clusters using the K-means clustering method, a popular unsupervised 

technique that organizes data into ‘k’  groups by reducing the distances between data points and their 

corresponding cluster centers. To make sure the ideal number of clusters (k), we utilized the Silhouette score, a 

measure that assesses the appropriateness of data points within their own clusters relative to other clusters, with 

higher scores indicating more precise clustering. Our results indicated that the most effective clustering occurred 

with k = 3. We identified the largest cluster, visually represented in purple, as the primary source domain, while 

the smaller clusters, shown in orange and grey, were designated as the target domains. The distribution of the 

original data, the progression of the Silhouette score, and the post-clustering PCA distribution are depicted in 

Figures 4–6 of our paper, respectively.

Figure 6.　The PCA distribution of the data with segmented clusters.

Figure 4.　The PCA distribution of the original data.

Figure 5.　The curve of Silhouette scores used for determining k value.
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3.2. Domain Adaptation-Based Machine Learning Models

3.2.1. Decision Tree

Decision tree [34, 35] was first considered in this study due to its excellent prediction performance and 

interpretability. A decision tree is a versatile machine learning algorithm used for both classification and 

regression tasks. At its core, it involves splitting data into branches to make predictions, forming a tree-like 

structure of decisions. The tree is built from a root node and expands by branching off into possible outcomes 

based on the features of the data. The decision tree starts at the root node, which holds the entire dataset. At each 

node, the tree asks a question about one of the features based on set criteria (such as Gini impurity, entropy, or 

variance reduction), and branches off into nodes according to the answers to these questions. This process 

continues recursively, creating a flowchart-like structure. Each branch represents an outcome, and each leaf 

node represents a final decision or prediction. One of the most significant advantages of decision trees is their 

ease of interpretation and visualization. They mimic human decision-making closer than other algorithms, 

making them intuitive and straightforward to explain even to non-technical stakeholders. Additionally, decision 

trees require relatively little data preparation. Unlike many other algorithms, they don’ t require feature scaling 

or centering at all [36 – 38]. Moreover, decision trees serve as the foundational building blocks for more 

advanced ensemble methods such as Random Forests and Gradient Boosting Machines, which combine multiple 

decision trees to improve performance and overcome some of the overfitting issues associated with single 

decision trees.

3.2.2. Random Forest

A Random Forest [36, 37] is an ensemble machine learning technique that builds upon the simplicity of 

decision trees and enhances their performance and accuracy. It consists of a large number of individual decision 

trees that operate as an ensemble. Each individual tree in the Random Forest spits out a class prediction and the 

class with the most votes becomes the model’s prediction. The fundamental concept behind Random Forest is a 

simple but powerful one—the wisdom of crowds. In data science speak, the reason that the Random Forest 

model works so well is that a large number of relatively uncorrelated models (trees) operating as a committee 

will outperform any of the individual constituent models. Random Forest applies the general technique of 

bootstrap aggregating, or bagging, to tree learners. Each tree in the ensemble is built from a sample drawn with 

replacement (i. e., a bootstrap sample) from the training set. Additionally, when splitting a node during the 

construction of the tree, the split that is chosen is no longer the best split among all features. Instead, the split 

that is picked is the best split among a random subset of the features. As a result, this strategy, called the random 

subspace method, ensures that the trees are de-correlated. When it comes to making predictions, the Random 

Forest aggregates the decisions of multiple trees to decide on the final output. For classification tasks, this 

typically means a majority voting mechanism, whereas for regression tasks, it usually involves averaging the 

predictions from each tree. One of the biggest advantages of Random Forest is its robustness. It is one of the 

most accurate learning algorithms available, which provides a good indicator for the robustness of the method. 

For many data sets, it produces a highly accurate classifier. The Random Forest algorithm is also known for its 

ability to limit overfitting. Since it takes the ensemble of relatively uncorrelated models, it won’ t overfit the 

data, unlike a single decision tree might.

3.2.3. K-Nearest Neighbors

The K-Nearest Neighbors (KNN) [38] algorithm is a simple, easy-to-implement supervised machine 

learning algorithm that can be used to solve both classification and regression problems. It’s a type of instance-

based learning, or lazy learning, where the function is only approximated locally and all computation is deferred 

until classification. KNN works by finding the closest data points in the training set to the new point and 

predicts the output based on these nearest neighbors. The ‘K’  in KNN is a parameter that refers to the number 

of nearest neighbors to include in the majority voting process. The distance between points is usually calculated 

using Euclidean distance, although other metrics such as Manhattan or Minkowski can also be used depending 
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on the context. For classification tasks, KNN assigns the new data point the class most common among its k 

nearest neighbors. In regression tasks, it assigns the property value based on the average of the values of its k 

nearest neighbors. KNN is incredibly simple to understand and implement and has shown remarkable 

effectiveness in cases with nonlinear data. Unlike most other algorithms, KNN doesn’ t require training time 

because the model structure isn’ t determined until a query is made to the system. This makes it uniquely 

flexible. In addition, KNN can easily handle cases with more than two classes without any increase in 

complexity or decrease in performance.

3.2.4. Domain Adaptation

CORAL, short for Correlation Alignment [33], is a machine learning technique that addresses the challenge 

of domain adaptation, which is particularly vital when training and testing data come from different 

distributions. This technique aims to align the second-order statistics (covariances) of source and target domains 

to reduce the domain shift, thereby enhancing the performance of a model when applied to the target domain.

Domain adaptation through CORAL minimizes the difference between the feature distributions of the source 

and target datasets. The central idea is that even if two datasets represent similar tasks but come from different 

sources (e. g., different sensors, environments, or times), their data distributions might differ significantly. 

CORAL aligns these distributions by adjusting the covariances of the source domain to match those of the target 

domain. This adjustment makes the features from both domains more comparable, allowing models trained on 

the source domain to perform better on the target domain without extensive retraining.

The process involves adjusting the data from the source domain so that its covariance aligns with the target 

domain. This is achieved by computing a linear transformation that modifies the source features. By applying 

this transformation, the variance of the features in the source domain is made similar to that in the target 

domain, thereby aligning the multi-dimensional data distributions. The transformed source data can then be used 

to train models that are more likely to generalize well on the target data.

CORAL is computationally efficient compared to other domain adaptation methods. It does not require 

complex optimization or extensive hyper-parameter tuning, making it easy to implement and integrate into 

existing workflows. In addition, The technique is versatile and can be applied across a variety of tasks where 

domain adaptation is required, including computer vision, natural language processing, and speech recognition. 

Whether the shifts between domains are due to different acquisition conditions, varying operational settings, or 

temporal changes, CORAL has been effective in bridging the gap, thereby ensuring model robustness.

4. Results and Discussion

4.1. The Performance of the Decision Tree

The experimental results presented showcase the performance of a decision tree classifier across two distinct 

target domains, with a focus on both the original and domain-adapted prediction accuracies. The performance 

metrics considered include Accuracy, F1 Score, Precision, and Recall.

From Tables 1 and 2, it’s evident that the decision tree classifier performs variably across the two domains. 

For Target Domain-1 (orange), the original performance metrics are notably low with an accuracy of 0.02, F1 

score of 0.03, precision of 0.10, and recall of 0.05. This trend suggests significant challenges in adapting the 

decision tree model to this particular domain using the original training methodology. Conversely, Target 

Domain-2 (grey) displays a better initial performance with an accuracy of 0.37, F1 score of 0.19, precision of 

0.40, and recall of 0.27. These results indicate a relatively higher compatibility or easier adaptability of the 

decision tree model within this domain, likely due to features or data distributions that are more in line with the 

model’s training base.

--7



Guojun Z. et al. J. Comput. Methods Eng. Appl. 2023, 3(1)

The domain adaptation approach aims to enhance the model’s ability to generalize across different datasets 

by aligning the statistical properties of the source and target domain data. As seen in Table 2, this strategy yields 

varied outcomes: (1) For Target Domain-1, domain adaptation slightly improves all metrics (accuracy to 0.03, 

F1 score to 0.06, precision to 0.04, recall to 0.10). Although the improvements are modest, they signify some 

positive shift in model adaptability due to domain alignment techniques. (2) Target Domain-2 shows a 

substantial increase in all performance metrics with domain adaptation, with accuracy jumping to 0.61, F1 score 

to 0.56, precision to 0.64, and recall to 0.59. These improvements underscore the effectiveness of domain 

adaptation in environments where the original model performance was already somewhat aligned with the 

domain characteristics.

The confusion matrices (Figures 7 and 8) provide deeper insight into the classifier’s performance. For 

Target Domain-1, the high concentration of misclassifications (especially for labels 5 and 6) before and after 

adaptation indicates persistent challenges in correctly predicting certain classes. For Target Domain-2, the 

adaptation leads to a clearer diagonal distribution in the confusion matrix, implying better true positive rates 

across most classes. Figure 9 also provides the comparative analysis of original and adapted models. It visually 

underscores the enhancements brought about by domain adaptation, particularly in the context of accuracy and 

recall metrics, where the adapted model for Target Domain-2 shows substantial gains.

Figure 7.　Original confusion matrix using the decision tree.

Table 1.　Original prediction performance using the decision tree.

Metrics

Accuracy

F1 score

Preicision

Recall

Target Domain-1 (Orange)

0.02

0.03

0.10

0.05

Target Domain-2 (Grey)

0.37

0.19

0.40

0.27

Table 2.　Domain adaptation-based prediction performance using the decision tree.

Metrics

Accuracy

F1 score

Preicision

Recall

Target Domain-1 (Orange)

0.03

0.06

0.04

0.10

Target Domain-2 (Grey)

0.61

0.56

0.64

0.59
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4.2. The Performance of the Random Forest

The original performance of the Random Forest in Target Domain-1 (orange) was markedly low shown in 

Table 3, with an accuracy of only 0.02 and a F1 score of 0.02. This suggests that the model, without adaptation, 

struggled considerably to generalize the predictive patterns from the training data to this particular domain. 

Precision was slightly higher at 0.10, while recall was at a minimal 0.01, indicating a poor ability to correctly 

identify true positives within the dataset. Conversely, in Target Domain-2 (grey), the Random Forest achieved 

much higher initial metrics, with an accuracy of 0.45 and a F1 score of 0.34. Precision in this domain was 

notably robust at 0.79, complemented by a recall of 0.43. These figures suggest a comparatively better initial fit 

for the model’s predictions in this domain, likely due to more favorable alignment between the model’s training 

and the characteristics of the grey domain’s data. The confusion matrices from Figure 10 further elucidate the 

model’s performance nuances. For Target Domain-1, the matrix shows widespread misclassifications across 

multiple classes, with particularly high false negatives and false positives in classes that dominate the dataset, 

reflecting the low recall and precision values. For Target Domain-2, while there is still some degree of 

misclassification, the matrix shows a higher concentration of correct predictions in the primary classes, 

indicating a better model fit.

Table 3.　Original prediction performance using the random forest.

Accuracy

F1 score

Preicision

0.02

0.02

0.10

0.45

0.34

0.79

Metrics Target Domain-1 (Orange) Target Domain-2 (Grey)

Figure 8.　Domain-adaptation-based confusion matrix using the decision tree.

Figure 9.　Comparison of Original and Domain Adaptation Performance Across Metrics using the decision tree.
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Recall 0.01 0.43

Cont.

Metrics Target Domain-1 (Orange) Target Domain-2 (Grey)

After domain adaptation shown in Table 4, both domains exhibited improved metrics, albeit with varying 

degrees of enhancement. In Target Domain-1, accuracy improved to 0.10 and F1 score to 0.05, which, while still 

low, represent a doubling of the model’s initial performance metrics. Precision and recall saw modest 

improvements. In Target Domain-2, domain adaptation pushed the accuracy up to 0.57 and the F1 score to 0.50, 

with precision and recall also experiencing significant increases. The confusion matrices in Figure 11 after 

domain adaptation reveal a denser concentration of correct predictions, especially in Target Domain-2, where 

class alignments are noticeably better than in the pre-adaptation state.

The bar charts in Figure 12 illustrate the stark contrast between the original and adapted model 

performances. While the adaptation has significantly enhanced performance in both domains, the improvements 

Table 4.　Domain adaptation-based prediction performance using the random forest.

Metrics

Accuracy

F1 score

Preicision

Recall

Target Domain-1 (Orange)

0.10

0.05

0.16

0.05

Target Domain-2 (Grey)

0.57

0.50

0.62

0.55

Figure 10.　Original confusion matrix using the random forest.

Figure 11.　Domain-adaptation-based confusion matrix using the random forest.
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are more pronounced in Target Domain-2.

4.3. The performance of the KNN

For Target Domain-1 (orange), the KNN algorithm struggled significantly with an accuracy of just 0.15, an 

F1 score of 0.05, precision at 0.25, and recall at a low 0.03 shown in Table 5. These metrics suggest that KNN 

was poorly aligned with the characteristics of this target domain initially. In contrast, Target Domain-2 (grey) 

exhibited substantially better results with an accuracy of 0.38, F1 score of 0.30, precision at 0.73, and recall at 

0.41, indicating a more favorable initial response to this domain’s features.

The confusion matrices (Figure 13) highlight the challenges in Target Domain-1 with widespread 

misclassifications across nearly all classes, reflecting the low performance metrics. For Target Domain-2, the 

matrix shows fewer off-diagonal entries, particularly for one major class, indicating a relatively better alignment 

of KNN’s classification boundaries with the data distribution of this domain.

Figure 13.　Original confusion matrix using the KNN.

Figure 12.　Comparison of Original and Domain Adaptation Performance Across Metrics using the random 
forest.

Table 5.　Original prediction performance using the KNN.

Metrics

Accuracy

F1 score

Preicision

Recall

Target Domain-1 (Orange)

0.15

0.05

0.25

0.03

Target Domain-2 (Grey)

0.38

0.30

0.73

0.41
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Post domain adaptation, the performance in Target Domain-1 saw some improvement; accuracy remained at 

0.15 but F1 score increased to 0.12, precision rose to 0.20, and recall increased slightly to 0.10 shown in Table 6. 

Target Domain-2 experienced significant enhancements post-adaptation, with accuracy soaring to 0.89, F1 score 

reaching 0.62, precision at 0.54, and recall at an impressive 0.96. The adapted confusion matrices (Figure 14) 

for Target Domain-1 still show considerable misclassifications but with a slight improvement in the correct 

predictions for some classes. In Target Domain-2, the adaptation process seems to have effectively resolved the 

misclassification issues, with a high concentration of correct predictions and very few errors, as seen in the 

nearly uniform color intensity across the major class.

The bar charts in Figure 15 dramatically illustrate the improvements. While the adaptation effect in Target 

Domain-1 is visible but modest, in Target Domain-2, there is a remarkable enhancement across all metrics, 

particularly in recall and F1 score.

The data presented in Table 7 highlights the effectiveness of domain adaptation techniques, particularly the 

application of CORAL in reducing covariance differences between the source and target domains. Initially, the 

covariance differences were significantly high, with values of approximately 60.59 in Target Domain-1 and 

Table 6.　Domain adaptation-based prediction performance using the KNN.

Metrics

Accuracy

F1 score

Preicision

Recall

Target domain-1 (orange)

0.15

0.12

0.20

0.10

Target domain-2 (grey)

0.89

0.62

0.54

0.96

Figure 14.　Domain-adaptation-based confusion matrix using the KNN.

Figure 15.　Comparison of Original and Domain Adaptation Performance Across Metrics using the KNN.
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126.06 in Target Domain-2. These large differences suggest a substantial disparity in data distributions between 

the source and each target domain, potentially leading to poor model performance when algorithms trained on 

the source domain are applied directly to the target domains. After applying CORAL, the covariance differences 

dramatically decreased to near-zero values (0.000005 for Target Domain-1 and 0.000012 for Target Domain-2). 

This dramatic reduction indicates that the feature distributions of the target domains have been effectively 

aligned with those of the source domain, facilitating a much smoother transfer of learning models and likely 

enhancing their predictive accuracy on the target data. Such alignment is crucial for achieving robust 

performance across different domains and showcases the power of domain adaptation techniques in overcoming 

challenges posed by dataset variability.

4.4. Discussion

Across different models and target domains, the performances of the decision tree, random forest, and KNN 

algorithms show significant variability. Generally, the random forest and KNN models outperform the decision 

tree, especially after domain adaptation, indicating the robustness of ensemble and nearest neighbors techniques 

over simpler decision trees in handling complex data patterns and domain shifts. In the original settings, the 

decision tree and KNN models struggle particularly in Target Domain-1, likely due to its challenging 

characteristics that do not align well with these models’  assumptions or their capacity to handle noise and 

feature diversity. Post domain adaptation, there is a noticeable improvement in all models’  performance metrics, 

with particularly striking enhancements in accuracy and recall for the random forest and KNN in Target 

Domain-2. This suggests that domain adaptation techniques, such as aligning distributions or feature re-scaling, 

are highly effective for these models.

However, despite these improvements, there remain gaps in performance, especially in Target Domain-1 

across all models, which might be attributed to intrinsic data complexities or insufficient model complexity. This 

highlights a need for further research into more sophisticated domain adaptation strategies or potentially 

exploring hybrid models that combine the strengths of various learning algorithms to enhance adaptability and 

predictive accuracy. The current study also suggests exploring deeper into the characteristics of each domain 

might yield insights that could lead to better-targeted adaptations, enhancing model performance uniformly 

across domains. But the domain adaptation still can provide excellent performance, suggesting its potential in 

many domains such as electronics, transportation [39–42] and communications [43–45].

5. Conclusion

The exploration into predictive maintenance for motor bearings using ML and AI demonstrates significant 

potential to enhance operational reliability and efficiency. The application of domain adaptation techniques, 

particularly CORAL, effectively reduces discrepancies in data distributions across different operational 

domains, thereby improving the generalizability and accuracy of predictive models. However, the research also 

uncovers persistent challenges in model performance across varied conditions, underscoring the need for further 

enhancement of domain adaptation methods. Future work should focus on refining these techniques and 

exploring hybrid models that integrate various AI approaches to better handle the complexities of real-world 

applications [46–54]. This study sets the groundwork for more resilient predictive maintenance strategies that 

can adapt to diverse and changing industrial environments, thus mitigating the risk of costly machinery failures 

[57–67].

Table 7.　The comparison of previous and new covariance difference.

Previous Covariance 
Difference-Target 

Domain-1

60.586413

New Covariance 
Difference-Target 

Domain-1

0.000005

Previous Covariance 
Difference-Target 

Domain-2

126.058967

New Covariance 
Difference-Target 

Domain-2

0.000012
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