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Abstract: E-commerce sales data often exhibit complex time series characteristics and are influenced by 

multiple factors, making traditional forecasting methods inadequate in capturing these dynamics. To address 

these challenges, this paper presents a forecasting model that integrates Ensemble Empirical Mode 

Decomposition (EEMD) with Long Short-Term Memory (LSTM) networks. The model first applies EEMD to 

decompose the original data signal into multiple Intrinsic Mode Function (IMF) components. These 

components, along with the original data, are then fed into the LSTM network for predictive analysis. As a case 

study, the proposed model is tested using a sales dataset of an Amazon clothing product. The results demonstrate 

that the model achieves a forecasting accuracy of 91%, surpassing several commonly used forecasting 

approaches in precision and reliability. This study highlights the potential of the EEMD-LSTM approach in 

improving sales forecasts for e-commerce platforms.
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1. Introduction

The rapid advancement of internet technologies has propelled e-commerce into a pivotal role in global

business, reshaping consumer behavior and transforming market structures. The vast amount of sales data 

generated by e-commerce platforms captures not only detailed consumer behavior but also offers insights into 

market trends, consumer preferences, and emerging business opportunities [1, 2]. In China, with the 

transformation of the overseas study consulting industry and the gradual application of data analytics, more and 

more industries are exploring how to extract key information from big data to support future decision-making 

[3]. Leveraging this data through accurate forecasting can empower businesses to make informed decisions, 

mitigate risks, and seize new opportunities.

Sales forecasting is a critical chapter in e-commerce, enabling companies to predict future trends based on 

historical data. It supports effective production planning, inventory management, and strategic marketing 

adjustments, ultimately enhancing competitiveness in dynamic markets [4,5]. Accurate forecasts help businesses 

align supply with demand, reduce operational costs, and optimize marketing efforts to capture seasonal or 

promotional opportunities. In addition, research on green supply chain optimization in global supply chain 

management and the chemical industry provides a broader perspective for supply chain management in e-
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commerce [6,7].

Among the various forecasting methods, time series analysis is particularly suitable for e-commerce due to 

its ability to detect temporal patterns and capture fluctuations over time. This approach allows businesses to 

anticipate sales trends and account for seasonal variations, promotional events, and shifting consumer demand 

[8]. However, precise forecasting of e-commerce sales data remains challenging due to its inherent complexity, 

influenced by dynamic, nonlinear factors and multi-dimensional variability [9]. Research on luxury brand 

reputation reveals that data decomposition techniques can precisely capture subtle shifts in consumer patterns 

within multidimensional markets [10,11].

To address these challenges, signal decomposition techniques are often applied to enhance the 

interpretability and accuracy of time series models. Empirical Mode Decomposition (EMD), for example, has 

been widely studied for its ability to extract meaningful components from complex data. Researchers such as P. 

E. S. and M. A. N. V. introduced a wavelet-based denoising method for EMD to enhance the quality of signal 

decomposition [12]. Although this approach showed improved denoising performance, it faced issues like mode 

mixing and algorithm instability. Similarly, Parey A. et al. explored EMD for fault diagnostics, effectively 

decomposing vibration signals, but encountered the endpoint effect, hindering reliable signal reconstruction 

[13]. Moreover, the application of Generative Adversarial Networks (GANs) in image recognition and user 

behavior prediction has demonstrated the potential of signal decomposition and denoising techniques in 

handling complex e-commerce data [14,15].

Given these limitations, Ensemble Empirical Mode Decomposition (EEMD) was developed as an 

improvement over EMD. EEMD introduces noise-assisted decomposition to mitigate mode mixing, thereby 

enhancing the stability and reliability of forecasts.

The final step in time series forecasting models involves deep learning algorithms, which significantly 

impact the accuracy of classification and recognition. Traditional time series analysis methods, such as the 

ARIMA model and exponential smoothing method, can capture linear trends and seasonal variations to some 

extent; however, they are inadequate for handling complex dynamic nonlinear system data [16, 17]. This 

limitation is especially apparent when encountered with time series data like e-commerce sales and stock price. 

With the rise of artificial intelligence, intelligent algorithms such as Support Vector Machines (SVM), Extreme 

Learning Machines (ELM), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) 

networks have been developed and widely applied in various complex time series forecasting problems [18]. 

Among these, Recurrent Neural Networks (RNN) and their variant-LSTM-are become popular in deep learning 

[19]. Because LSTM, as a specialized architecture of RNN, effectively addresses the gradient vanishing and 

explosion issues that traditional RNNs face when processing long sequences [20,21].

The LSTM algorithm has demonstrated significant potential in practical applications. In the e-commerce 

sector, Yongsu K. pioneered the use of LSTM to forecast product sales and analyze purchasing behavior, 

achieving a prediction accuracy of 90% [22]. Similarly, Ly T. S. utilized LSTM in the financial sector for stock 

price prediction and risk assessment, finding that its accuracy significantly outperformed common deep learning 

methods like CNN, with a prediction accuracy as high as 97% [23]. These studies highlight the effectiveness of 

LSTM for tackling complex, nonlinear time series data and underscore its relevance for sales forecasting in e-

commerce. Recent advances in multifunctional OCR models for noise handling have expanded deep learning’s 

potential in complex data applications [24].

Building on these advancements, this paper proposes a hybrid forecasting model that combines EEMD with 

LSTM deep learning to address the challenges of forecasting e-commerce sales data. By applying EEMD to 

extract key intrinsic components from noisy sales data and applying LSTM to monitor temporal dependencies, 

the proposed model achieves high prediction accuracy. Additionally, the model construction draws on adaptive 

interaction models for trajectory prediction to ensure flexibility and stability in e-commerce data applications, 

while also leveraging the linear layering structure of deep UV LEDs to optimize algorithm performance [25,26]. 

Using a clothing sales dataset from Amazon, available in the UCI Machine Learning Repository, this study 

validates the effectiveness of the model.
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2. Theoretical Foundations

2.1. Empirical Mode Decomposition Method

The EMD algorithm is an adaptive signal processing technique that decomposes complex, mixed signals 

into multiple Intrinsic Mode Functions (IMFs). This decomposition allows for the separation of composite 

signals into distinct components, facilitating more accurate analysis. Unlike Fourier transforms and wavelet 

transforms, EMD adaptively decomposes signals based on their length and complexity, without requiring a 

predefined basis function. This adaptability ensures a high signal-to-noise ratio and provides effective time-

frequency localization.

The EMD algorithm performs decomposition by extracting IMFs that represent oscillatory modes embedded 

within the original signal. The resulting IMFs capture both amplitude and frequency variations, making the 

method particularly useful for analyzing non-stationary and nonlinear signals. To ensure the decomposition is 

valid, the extracted IMF components must satisfy the following two conditions:

1. For the entire sample dataset, the difference between the number of zero-crossings and the number of

extreme points (local maxima or minima) must be less than or equal to 1;

2. Throughout the decomposition process, the mean value of the upper envelope (connecting the local

maxima) and the lower envelope (connecting the local minima) must always be 0.

The EMD method extracts the IMF vectors through a sifting process, which iteratively removes the local 

averages of the upper and lower envelopes. Each IMF is obtained through the following steps:

First, calculate the mean envelope y1(t ) of the original signal.

y1(t ) = y+( )t + y-( )t
2

(1)

where y+(t ) and y-(t ) represent the upper and the lower envelope function fitted to the original signal,

respectively.

To obtain the h1
1(t ) that does not contain low-frequency signals, subtract y1(t ) from the original signal x (t )

as shown in the Equation (2).

h1
1(t ) = x (t ) - y1(t ) (2)

Determine whether h1
1(t ) meets the two conditions for IMF decomposition. If not, repeat these steps after k

iterations until the two conditions are satisfied. Then, the first-order IMF component of the original signal is 

c1(t ), and can be expressed as:

c1(t ) = imf1(t ) = hk
1(t ) (3)

Generally, k is less than 10.

Abstract c1(t ) from the original signal to generate a new signal r1(t ), r1(t ) is expressed by Equation (4):

r1(t ) = x1(t ) - c1(t ) (4)

Repeat the above steps of Equations (1) and (2) for r1(t ) until r1(t ) meets the IMF conditions, resulting in

the second IMF component c2(t ). Continue this process until obtaining the n-th order IMF component cn(t ),
with the residue rn(t )being a monotonic function. The decomposition process will stop when the IMF conditions

can no longer be accomplished.

The decomposition result of EMD is:

x (t ) =∑
i = 1

n

ci( )t + rn(t ) (5)

where rn(t ) is the final residual; n is the number of IMFs. Within the decomposition frequency range, EMD

decomposition yields n IMF vectors corresponding to different frequencies, which are then sorted from high to 

low frequency.

The EMD decomposition algorithm is characterized by its fast solution speed and strong adaptability. 

However, it still faces challenges such as mode mixing and endpoint effects.

2.2. The Ensemble Empirical Mode Decomposition

Ensemble Empirical Mode Decomposition (EEMD) is an improved version of the Empirical Mode EMD 
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technique. It works by adding white noise to the EMD algorithm, guiding the classification of signals and 

enabling the automatic separation of pure signals with different frequencies. EEMD effectively resolves the 

mode mixing issue inherent in the original EMD algorithm, greatly enhancing the accuracy of signal 

decomposition.

The computational steps of the EEMD algorithm are as follows:

First, Set the number of times white noise is added to N. Add one time of Gaussian white noise ρ1(t ) to the 

original signal x (t ) to form the mixed signal X1(t ).
X1(t ) = x (t ) + ρ1(t ) (6)

Decompose the mixed signal X1(t ) using EMD. The decomposition yields multiple intrinsic mode functions 

(IMFs) with different frequencies:

X1(t ) =∑
i = 1

m

IMFi1( )t + r1(t ) (7)

where m is the number of IMFs obtained through EMD, and r1(t ) is the residual component.

Add white Gaussian noise (WGN) signals across different frequency bands to the original signal, and repeat 

the first and second steps. The resulting Xk(t ) represents that x (t ) is decomposed by EEMD with K times:

Xk(t ) =∑
i = 1

m

IMFik( )t + rk(t ) (8)

To effectively eliminate the noise components in the signal, the average of all IMF components is computed.

IMFi(t ) = 1
N∑k = 1

N

IMFik( )t (9)

Perform signal envelope reconstruction on the decomposed components IMFi(t ), ensuring that the 

relationship between the reconstructed signal and the original signal is expressed as follows:

ωn =
ω

N
(10)

where ω represents the standard deviation of the added white noise, while N denotes the times of noise added. It 

can be observed that ωn decreases as the number of added noise increases. In this study, we ω = 0.2, and 

N = 500.

2.3. LSTM Network

The German scholars Hochreiter and Schmidhuber first introduced a recurrent neural network capable of 

remembering long-term dependencies, known as LSTM. LSTM is an enhanced deep learning method based on 

traditional recurrent neural networks, retaining their powerful memory capabilities while effectively capturing 

nonlinear features in time series data and accurately representing the temporal relationships among data points. 

The basic structure of a LSTM unit is illustrated in Figure 1 [27].

Figure 1.　LSTM Basic Unit Diagram.

--4



Yunxiang G, et al. J. Comput. Methods. Eng. Appl. 2023,3(1)

In the LSTM model, the Sigmoid activation function governs the forget gate, which primarily determines 

the noise information to be discarded from the previous long-term state ct - 1. The expression for the ft is 

presented in Equation (11). Through this mechanism, LSTM effectively manages the retention and forgetting of 

information.

ft = σ (W T
xf xt +W T

hf ht - 1 + bf ) = σ (-ft ) (11)

where ft denotes the control of the forget gate, W T
xf represents the dimensionality of the input features, W T

hf 

signifies the dimension of the hidden layer features, xtindicates the values of the input layer, ht - 1 refers to the 

number of stacked LSTM layers, bf represents the state values of the hidden layer, and σ (-ft )b denotes the values 

of the output layer.

In the LSTM model, the Sigmoid activation function plays a crucial role, primarily in controlling the input 

gate it. The expression for the Sigmoid function is presented in Equation (12), which enables the LSTM model 

to manage the flow and updating of information more precisely when processing time-series data.

i = σ (W T
xi +W T

ht ht - 1 + bi ) = σ (-it ) (12)

In the LSTM model, the tanh activation function plays a crucial role in regulating the degree of integration 

between the current input and the long-term state ct. Through the tanh function (see Equation (13)), the LSTM 

model effectively controls the interaction between the input information and the long-term state. This 

mechanism allows the LSTM to better capture and express the complex relationships among data when handling 

time-series information.

at = tanh (W T
xa xt +W T

haht - 1 + ba ) = tanh (-at ) (13)

The outputs of the forget gate ft and the input gate it together influence the updating process of the long-term 

state ct, as illustrated in Equation (14). This updating mechanism allows the LSTM model to integrate 

information from both forgetting and input, enabling it to capture and process complex patterns in time-series 

data more effectively.

c = ft⊗ ct - 1 + it⊗ at (14)

where it is the input gate, and at is the hidden layer coefficient.

The output gate ot uses the Sigmoid activation function to determine the short-term state ht of the current 

neuron cell. The Sigmoid function is vital in this process, as it helps the LSTM model to decide which 

information will be output as the short-term state, thereby influencing the model’s predictions and decisions. By 

employing the calculation method outlined in Equation (15), the LSTM can capture and utilize key features in 

time-series data more effectively.

ot = σ (W T
xo xt +W T

hoht - 1 + ba ) = σ (-ot ) (15)

The determination of the short-term state involves integrating information from the current long-term state ct 

and the output gate ot. The calculation process is presented in Equation (16).

ht = ot⊗ tanh (ct) (16)

When all control gates are removed and the long-term and short-term states are integrated, the LSTM unit 

effectively reverts to a standard recurrent neural network.

2.4. Prediction Model Based on EEMD and LSTM

Since traditional forecasting methods often struggle with complex, nonlinear, and fast-changing time series 

data. To overcome these challenges, this paper proposes a novel EEMD-LSTM model for the sales data 

prediction of a specific Amazon clothing product [28]. The process consists of several steps: First, the sales data 

undergoes preprocessing. Next, the EEMD method decomposes the data into multiple Intrinsic IMF 

components. Features are then extracted from these IMF components, forming a signal feature vector dataset, 

which is then fed into corresponding prediction models. Finally, the LSTM neural network algorithm fits the 

sales data, producing the final sales forecast results.
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2.5. Evaluation Metrics

In evaluating the effectiveness of the prediction model, metrics include Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and the coefficient of determination 

(R2) are generally used. However, due to the presence of zero values in the sales data of the specific Amazon 

clothing product, MAPE is not a suitable criterion for assessment. Therefore, this paper utilizes RMSE, MAE, 

and R2 as the primary measurement standards, with the specific formulas outlined as follows.

RMSE =
1
n∑i = 1

n

( )yi - xi

2
(17)

MAE =
1
n∑i = 1

n

|| yi - xi (18)

R2 = 1 -∑
i = 1

n ( )yi - xi

2

( )yi - y
Ù 2

(19)

where xi represents the actual value, yj represents predicted value, and n denotes the number of data points.

The range for R2 is between 0 and 1. A value of R2 closer to 1 indicates a better fit of the model to the data. 

Generally, a model is considered as have a good fit when R2 exceeds 0.8.

3. Empirical Analysis

3.1. Data Sources and Preprocessing

To thoroughly investigate the applicability of proposed method in forecasting clothing product sales on the 

Amazon e-commerce platform, this study utilizes a sample dataset of clothing sales obtained from the UCI 

Machine Learning Repository, covering the period from 1 October 2021, to 31 December 2021 (see Figure 2). 

As illustrated in Figure 2, the Amazon platform’s clothing sales data exhibits complex and non-stationary 

characteristics, with observable periodic variations, indicating a close relationship between sales revenue and 

seasonal trends.

Figure 2.　Amazon E-commerce Clothing Product Sales Sample Data.

Given the inherent instability of e-commerce sales data, the original dataset was normalized to enhance 

processing efficiency and accuracy, as displayed in Equation (20). The normalized data was then divided, with 

90% allocated to the training set for model learning, and the remaining 10% used as the test set to evaluate the 

predictive accuracy of various algorithmic models. This partitioning ensures an objective performance 

assessment of the models in tackling the complex and dynamic challenges of e-commerce sales forecasting, 

providing robust data support for selecting the optimal prediction model.

x1 =
x - xmin

xmax - xmin

(20)

where x1 indicates the normalized data, xmax and xmin represent the maximum and minimum values in the sample, 

respectively.

In terms of neural network parameter settings, the model consists of two LSTM hidden layers, each with 32 
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neurons, along with a single-neuron output layer. The batch size is set to 16, and the model is trained for 200 

epochs. An early stopping strategy was employed to prevent overfitting, and the Adam optimizer (Adaptive 

Moment Estimation) was selected and used. To ensure the stability of the results, the average of ten training 

outcomes for each model is taken as the final performance metric.

3.2. Signal Decomposition Processing

This study employed the EMD, EEMD, and CEEMD (Complete Ensemble Empirical Mode Decomposition) 

algorithms for signal decomposition on training sample data, with results illustrated in Figures 3 – 5. The 

decomposed IMF signal components exhibit a gradually flattening trend, indicating that interference signals are 

characterized by significant volatility. This observation suggests that multimodal decomposition methods can 

effectively eliminate these interference components from the data. High-frequency IMF components capture 

rapid oscillations in the signal, while low-frequency IMF components represent slower trends. The larger 

fluctuations observed in the low-frequency components indicate substantial changes in the signal, reflecting 

potential sudden events in e-commerce sales data. Consequently, this pronounced uncertainty and susceptibility 

to interference pose challenges for accurately forecasting e-commerce sales.

 

Figure 3.　EMD Model Decomposition Results.

 

Figure 4.　EEMD Model Decomposition Results.

--7



Yunxiang G, et al. J. Comput. Methods. Eng. Appl. 2023,3(1)

 

Figure 5.　CEEMD Model Decomposition Results.

3.3. Analysis of the Results

To evaluate the effectiveness of different modal decomposition methods, this study inputs the IMF 

components from the EMD, EEMD, and CEEMD algorithms, along with the normalized training data, into both 

LSTM and back propagation (BP) models, creating six combined forecasting models: EMD-BP, EMD-LSTM, 

EEMD-BP, EEMD-LSTM, CEEMD-BP, and CEEMD-LSTM. A comprehensive comparison of these six models 

is then conducted, with the results presented in Table 1.

Table 1 is the corresponding results [29, 30]. Generally speaking, the EEMD-LSTM models achieve the 

highest R2 values, while demonstrating the lowest RMSE and MAE values. This indicates that the proposed 

method performs better than other comparative models, highlighting its effectiveness in predicting e-commerce 

sales data.

Specifically, the R2 of the EEMD-LSTM combined model is the highest among the various methods, 

improving by nearly 3% compared to the EEMD-BP method, about 5% over the CEEMD-LSTM method, and 

approximately 6% over the CEEMD-BP method. This indicate that the proposed method provides the best 

fitness, effectively predict the sales for Amazon’s e-commerce clothing products. Moreover, the EEMD-LSTM 

model achieves the lowest RMSE and MAE across all methods. Specifically, the corresponding RMSE and 

MAE of the EEMD-LSTM is approximately 20% and 25% lower than that of the EEMD-BP method, about 32% 

and 44% lower than that of the CEEMD-LSTM method, and around 38% and 47% lower than that of the 

CEEMD-BP method. These results further highlight the advantages of the proposed method in terms of 

prediction accuracy and affirm its robust identification capability.

Table 1.　Comparative Analysis Table of Different Prediction Methods.

Prediction Method

EMD-BP

EMD-LSTM

CEEMD-BP

CEEMD-LSTM

EEMD-BP

EEMD-LSTM

R2

0.8630

0.9146

0.9385

0.9467

0.9638

0.9932

RMSE

69.2230

39 2848

37.5875

34.0916

29.1603

23.0854

MAE

61.4951

31.2912

29.0713

27.3481

20.3052

15.2966
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In addition, the LSTM model outperforms the BP model in capturing the complex and highly nonlinear 

features of e-commerce sales data, demonstrating its superior prediction accuracy in the test. By employing the 

proposed method, a comparative analysis of the sales data from 1 December to 3 December 2021 were 

conducted (Figure 6). The results illustrate that the model fits the data exceptionally well, with only minor errors 

observed at certain extreme points, such as local maximum and minimum sales [31]. Overall, the predicted data 

closely aligns with the actual data, confirming the practical effectiveness of the constructed EEMD-LSTM 

model. By applying the LSTM neural network prediction model to analyze sales sample data for a specific e-

commerce clothing product on Amazon from 1 December to 3 December 2021, we achieved a prediction 

accuracy of 91%.

4. Conclusions

This paper combines the LSTM model with several advanced data decomposition algorithms to develop 

forecasting models, including EMD-LSTM, EEMD-LSTM, etc., for predicting Amazon clothing sales. The 

results demonstrate that the EEMD-LSTM model outperforms other methods:

1. Among the six forecasting methods analyzed, the EEMD-LSTM model achieved the highest R2 score and 

the lowest RMSE and MAE values, confirming its superior predictive accuracy for the Amazon clothing sales 

dataset.

2. A test was conducted using sales data from 1 December to 3 December 2021. The EEMD-LSTM model 

maintained high accuracy, with predicted values closely matching the actual data. Its prediction accuracy 

reached 91%, further confirmed the model’s reliability and effectiveness in practical applications.
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