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Abstract: E-commerce sales data often exhibit complex time series characteristics and are influenced by
multiple factors, making traditional forecasting methods inadequate in capturing these dynamics. To address
these challenges, this paper presents a forecasting model that integrates Ensemble Empirical Mode
Decomposition (EEMD) with Long Short-Term Memory (LSTM) networks. The model first applies EEMD to
decompose the original data signal into multiple Intrinsic Mode Function (IMF) components. These
components, along with the original data, are then fed into the LSTM network for predictive analysis. As a case
study, the proposed model is tested using a sales dataset of an Amazon clothing product. The results demonstrate
that the model achieves a forecasting accuracy of 91%, surpassing several commonly used forecasting
approaches in precision and reliability. This study highlights the potential of the EEMD-LSTM approach in

improving sales forecasts for e-commerce platforms.
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1. Introduction

The rapid advancement of internet technologies has propelled e-commerce into a pivotal role in global
business, reshaping consumer behavior and transforming market structures. The vast amount of sales data
generated by e-commerce platforms captures not only detailed consumer behavior but also offers insights into
market trends, consumer preferences, and emerging business opportunities [1, 2]. In China, with the
transformation of the overseas study consulting industry and the gradual application of data analytics, more and
more industries are exploring how to extract key information from big data to support future decision-making
[3]. Leveraging this data through accurate forecasting can empower businesses to make informed decisions,
mitigate risks, and seize new opportunities.

Sales forecasting is a critical chapter in e-commerce, enabling companies to predict future trends based on
historical data. It supports effective production planning, inventory management, and strategic marketing
adjustments, ultimately enhancing competitiveness in dynamic markets [4,5]. Accurate forecasts help businesses
align supply with demand, reduce operational costs, and optimize marketing efforts to capture seasonal or
promotional opportunities. In addition, research on green supply chain optimization in global supply chain

management and the chemical industry provides a broader perspective for supply chain management in e-
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commerce [6,7].

Among the various forecasting methods, time series analysis is particularly suitable for e-commerce due to
its ability to detect temporal patterns and capture fluctuations over time. This approach allows businesses to
anticipate sales trends and account for seasonal variations, promotional events, and shifting consumer demand
[8]. However, precise forecasting of e-commerce sales data remains challenging due to its inherent complexity,
influenced by dynamic, nonlinear factors and multi-dimensional variability [9]. Research on luxury brand
reputation reveals that data decomposition techniques can precisely capture subtle shifts in consumer patterns
within multidimensional markets [10,11].

To address these challenges, signal decomposition techniques are often applied to enhance the
interpretability and accuracy of time series models. Empirical Mode Decomposition (EMD), for example, has
been widely studied for its ability to extract meaningful components from complex data. Researchers such as P.
E. S. and M. A. N. V. introduced a wavelet-based denoising method for EMD to enhance the quality of signal
decomposition [12]. Although this approach showed improved denoising performance, it faced issues like mode
mixing and algorithm instability. Similarly, Parey A. et al. explored EMD for fault diagnostics, effectively
decomposing vibration signals, but encountered the endpoint effect, hindering reliable signal reconstruction
[13]. Moreover, the application of Generative Adversarial Networks (GANs) in image recognition and user
behavior prediction has demonstrated the potential of signal decomposition and denoising techniques in
handling complex e-commerce data [14,15].

Given these limitations, Ensemble Empirical Mode Decomposition (EEMD) was developed as an
improvement over EMD. EEMD introduces noise-assisted decomposition to mitigate mode mixing, thereby
enhancing the stability and reliability of forecasts.

The final step in time series forecasting models involves deep learning algorithms, which significantly
impact the accuracy of classification and recognition. Traditional time series analysis methods, such as the
ARIMA model and exponential smoothing method, can capture linear trends and seasonal variations to some
extent; however, they are inadequate for handling complex dynamic nonlinear system data [16, 17]. This
limitation is especially apparent when encountered with time series data like e-commerce sales and stock price.
With the rise of artificial intelligence, intelligent algorithms such as Support Vector Machines (SVM), Extreme
Learning Machines (ELM), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM)
networks have been developed and widely applied in various complex time series forecasting problems [18].
Among these, Recurrent Neural Networks (RNN) and their variant-LSTM-are become popular in deep learning
[19]. Because LSTM, as a specialized architecture of RNN, effectively addresses the gradient vanishing and
explosion issues that traditional RNNs face when processing long sequences [20,21].

The LSTM algorithm has demonstrated significant potential in practical applications. In the e-commerce
sector, Yongsu K. pioneered the use of LSTM to forecast product sales and analyze purchasing behavior,
achieving a prediction accuracy of 90% [22]. Similarly, Ly T. S. utilized LSTM in the financial sector for stock
price prediction and risk assessment, finding that its accuracy significantly outperformed common deep learning
methods like CNN, with a prediction accuracy as high as 97% [23]. These studies highlight the effectiveness of
LSTM for tackling complex, nonlinear time series data and underscore its relevance for sales forecasting in e-
commerce. Recent advances in multifunctional OCR models for noise handling have expanded deep learning’s
potential in complex data applications [24].

Building on these advancements, this paper proposes a hybrid forecasting model that combines EEMD with
LSTM deep learning to address the challenges of forecasting e-commerce sales data. By applying EEMD to
extract key intrinsic components from noisy sales data and applying LSTM to monitor temporal dependencies,
the proposed model achieves high prediction accuracy. Additionally, the model construction draws on adaptive
interaction models for trajectory prediction to ensure flexibility and stability in e-commerce data applications,
while also leveraging the linear layering structure of deep UV LEDs to optimize algorithm performance [25,26].
Using a clothing sales dataset from Amazon, available in the UCI Machine Learning Repository, this study

validates the effectiveness of the model.
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2. Theoretical Foundations
2.1. Empirical Mode Decomposition Method

The EMD algorithm is an adaptive signal processing technique that decomposes complex, mixed signals
into multiple Intrinsic Mode Functions (IMFs). This decomposition allows for the separation of composite
signals into distinct components, facilitating more accurate analysis. Unlike Fourier transforms and wavelet
transforms, EMD adaptively decomposes signals based on their length and complexity, without requiring a
predefined basis function. This adaptability ensures a high signal-to-noise ratio and provides effective time-
frequency localization.

The EMD algorithm performs decomposition by extracting IMFs that represent oscillatory modes embedded
within the original signal. The resulting IMFs capture both amplitude and frequency variations, making the
method particularly useful for analyzing non-stationary and nonlinear signals. To ensure the decomposition is
valid, the extracted IMF components must satisfy the following two conditions:

1. For the entire sample dataset, the difference between the number of zero-crossings and the number of
extreme points (local maxima or minima) must be less than or equal to 1;

2. Throughout the decomposition process, the mean value of the upper envelope (connecting the local
maxima) and the lower envelope (connecting the local minima) must always be 0.

The EMD method extracts the IMF vectors through a sifting process, which iteratively removes the local
averages of the upper and lower envelopes. Each IMF is obtained through the following steps:

First, calculate the mean envelope y,(#) of the original signal.

yu(n) = 20 1)

where y,(¢) and y_(¢) represent the upper and the lower envelope function fitted to the original signal,
respectively.

To obtain the /;(¢) that does not contain low-frequency signals, subtract y,(¢) from the original signal x(¢)
as shown in the Equation (2).

B(e) =x (1) —y,(1) 2)

Determine whether /](¢) meets the two conditions for IMF decomposition. If not, repeat these steps after k
iterations until the two conditions are satisfied. Then, the first-order IMF component of the original signal is
c,(t), and can be expressed as:

c,(2) =imf, (1) =h’(2) 3)

Generally, £ is less than 10.

Abstract ¢,(¢) from the original signal to generate a new signal r,(¢), ,(¢) is expressed by Equation (4):

ri(t) =x,(1) —¢,() )

Repeat the above steps of Equations (1) and (2) for #,(¢) until »,(¢) meets the IMF conditions, resulting in
the second IMF component ¢,(¢). Continue this process until obtaining the n-th order IMF component c,(¢),
with the residue (¢ )being a monotonic function. The decomposition process will stop when the IMF conditions
can no longer be accomplished.

The decomposition result of EMD is:

n

x(t) = Yelt) +r,(1) ()

i=1
where r,(¢) is the final residual; n is the number of IMFs. Within the decomposition frequency range, EMD
decomposition yields n IMF vectors corresponding to different frequencies, which are then sorted from high to
low frequency.
The EMD decomposition algorithm is characterized by its fast solution speed and strong adaptability.

However, it still faces challenges such as mode mixing and endpoint effects.

2.2. The Ensemble Empirical Mode Decomposition
Ensemble Empirical Mode Decomposition (EEMD) is an improved version of the Empirical Mode EMD

3.
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technique. It works by adding white noise to the EMD algorithm, guiding the classification of signals and
enabling the automatic separation of pure signals with different frequencies. EEMD effectively resolves the
mode mixing issue inherent in the original EMD algorithm, greatly enhancing the accuracy of signal
decomposition.

The computational steps of the EEMD algorithm are as follows:

First, Set the number of times white noise is added to N. Add one time of Gaussian white noise p,(¢) to the
original signal x (¢) to form the mixed signal X, ().

X,(1) =x() +p,(2) (6)
Decompose the mixed signal X,(#) using EMD. The decomposition yields multiple intrinsic mode functions

(IMFs) with different frequencies:
X,(t) = DIIMF, (1) +r,(2) (7)
i=1

where m is the number of IMFs obtained through EMD, and r,(¢) is the residual component.
Add white Gaussian noise (WGN) signals across different frequency bands to the original signal, and repeat
the first and second steps. The resulting X, (#) represents that x (#) is decomposed by EEMD with K times:
X(1) = S IMF, (1) +7,(1) ()
i=1

To effectively eliminate the noise components in the signal, the average of all IMF components is computed.
1 N
IMF(t) = — » IMF,
(1) =y 2 1M, (1) ©)

Perform signal envelope reconstruction on the decomposed components IMF(t), ensuring that the

relationship between the reconstructed signal and the original signal is expressed as follows:

0= (10)
VN
where ® represents the standard deviation of the added white noise, while N denotes the times of noise added. It
can be observed that @, decreases as the number of added noise increases. In this study, we ® = 0.2, and

N =500.

2.3. LSTM Network

The German scholars Hochreiter and Schmidhuber first introduced a recurrent neural network capable of
remembering long-term dependencies, known as LSTM. LSTM is an enhanced deep learning method based on
traditional recurrent neural networks, retaining their powerful memory capabilities while effectively capturing
nonlinear features in time series data and accurately representing the temporal relationships among data points.
The basic structure of a LSTM unit is illustrated in Figure 1 [27].

Oblivion Door f,

® ®

Output gates o,

Figure 1. LSTM Basic Unit Diagram.
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In the LSTM model, the Sigmoid activation function governs the forget gate, which primarily determines
the noise information to be discarded from the previous long-term state ¢,— 1. The expression for the f, is
presented in Equation (11). Through this mechanism, LSTM effectively manages the retention and forgetting of
information.

f=o(Wix+Win,_,+b)=a(F,) (11)
where f, denotes the control of the forget gate, Wx; represents the dimensionality of the input features, W,;
signifies the dimension of the hidden layer features, x,indicates the values of the input layer, 4, , refers to the
number of stacked LSTM layers, b, represents the state values of the hidden layer, and o‘(f, )b denotes the values
of the output layer.

In the LSTM model, the Sigmoid activation function plays a crucial role, primarily in controlling the input
gate i,. The expression for the Sigmoid function is presented in Equation (12), which enables the LSTM model
to manage the flow and updating of information more precisely when processing time-series data.

iza(WXLT.+ thh,_]+b,.)=a(li) (12)

In the LSTM model, the tanh activation function plays a crucial role in regulating the degree of integration
between the current input and the long-term state c¢,. Through the tanh function (see Equation (13)), the LSTM
model effectively controls the interaction between the input information and the long-term state. This
mechanism allows the LSTM to better capture and express the complex relationships among data when handling
time-series information.

a,=tanh (Wox,+W/hh,  +b,)=tanh(a,) (13)

The outputs of the forget gate f, and the input gate i, together influence the updating process of the long-term
state c,, as illustrated in Equation (14). This updating mechanism allows the LSTM model to integrate
information from both forgetting and input, enabling it to capture and process complex patterns in time-series
data more effectively.

c=f Qe +iQa, (14)
where i, is the input gate, and q, is the hidden layer coefficient.

The output gate o, uses the Sigmoid activation function to determine the short-term state %, of the current
neuron cell. The Sigmoid function is vital in this process, as it helps the LSTM model to decide which
information will be output as the short-term state, thereby influencing the model’s predictions and decisions. By
employing the calculation method outlined in Equation (15), the LSTM can capture and utilize key features in
time-series data more effectively.

o,=a(Wix+Woh,_,+b,)=0c(0,) (15)

The determination of the short-term state involves integrating information from the current long-term state c,

and the output gate o,. The calculation process is presented in Equation (16).
h,=0,@tanh(c,) (16)
When all control gates are removed and the long-term and short-term states are integrated, the LSTM unit

effectively reverts to a standard recurrent neural network.

2.4. Prediction Model Based on EEMD and LSTM

Since traditional forecasting methods often struggle with complex, nonlinear, and fast-changing time series
data. To overcome these challenges, this paper proposes a novel EEMD-LSTM model for the sales data
prediction of a specific Amazon clothing product [28]. The process consists of several steps: First, the sales data
undergoes preprocessing. Next, the EEMD method decomposes the data into multiple Intrinsic IMF
components. Features are then extracted from these IMF components, forming a signal feature vector dataset,
which is then fed into corresponding prediction models. Finally, the LSTM neural network algorithm fits the

sales data, producing the final sales forecast results.
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2.5. Evaluation Metrics

In evaluating the effectiveness of the prediction model, metrics include Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and the coefficient of determination
(R?) are generally used. However, due to the presence of zero values in the sales data of the specific Amazon
clothing product, MAPE is not a suitable criterion for assessment. Therefore, this paper utilizes RMSE, MAE,

and R* as the primary measurement standards, with the specific formulas outlined as follows.

RMSE = /%Z(y,.—x,)2 (17)

1 n
MAE= ;;\ y,—X, (18)
2
R=1- EM (19)

2
i=1 N
(y[_ y)

where x, represents the actual value, y; represents predicted value, and n denotes the number of data points.
The range for R” is between 0 and 1. A value of R* closer to 1 indicates a better fit of the model to the data.

Generally, a model is considered as have a good fit when R” exceeds 0.8.

3. Empirical Analysis
3.1. Data Sources and Preprocessing

To thoroughly investigate the applicability of proposed method in forecasting clothing product sales on the
Amazon e-commerce platform, this study utilizes a sample dataset of clothing sales obtained from the UCI
Machine Learning Repository, covering the period from 1 October 2021, to 31 December 2021 (see Figure 2).
As illustrated in Figure 2, the Amazon platform’s clothing sales data exhibits complex and non-stationary
characteristics, with observable periodic variations, indicating a close relationship between sales revenue and

seasonal trends.

&60866: —— sales Data

500000

400000

300000

Sales Amount/Dollar

200000

100000

40
Time/Day

Figure 2. Amazon E-commerce Clothing Product Sales Sample Data.

Given the inherent instability of e-commerce sales data, the original dataset was normalized to enhance
processing efficiency and accuracy, as displayed in Equation (20). The normalized data was then divided, with
90% allocated to the training set for model learning, and the remaining 10% used as the test set to evaluate the
predictive accuracy of various algorithmic models. This partitioning ensures an objective performance
assessment of the models in tackling the complex and dynamic challenges of e-commerce sales forecasting,

providing robust data support for selecting the optimal prediction model.

1 x_xmin

xl= S (20)

where x' indicates the normalized data, x_, and x,,, represent the maximum and minimum values in the sample,
respectively.

In terms of neural network parameter settings, the model consists of two LSTM hidden layers, each with 32

-6-
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neurons, along with a single-neuron output layer. The batch size is set to 16, and the model is trained for 200
epochs. An early stopping strategy was employed to prevent overfitting, and the Adam optimizer (Adaptive
Moment Estimation) was selected and used. To ensure the stability of the results, the average of ten training

outcomes for each model is taken as the final performance metric.

3.2. Signal Decomposition Processing

This study employed the EMD, EEMD, and CEEMD (Complete Ensemble Empirical Mode Decomposition)
algorithms for signal decomposition on training sample data, with results illustrated in Figures 3 —5. The
decomposed IMF signal components exhibit a gradually flattening trend, indicating that interference signals are
characterized by significant volatility. This observation suggests that multimodal decomposition methods can
effectively eliminate these interference components from the data. High-frequency IMF components capture
rapid oscillations in the signal, while low-frequency IMF components represent slower trends. The larger
fluctuations observed in the low-frequency components indicate substantial changes in the signal, reflecting
potential sudden events in e-commerce sales data. Consequently, this pronounced uncertainty and susceptibility

to interference pose challenges for accurately forecasting e-commerce sales.

¥10*min

Figure 3. EMD Model Decomposition Results.
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Figure 4. EEMD Model Decomposition Results.
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Figure 5. CEEMD Model Decomposition Results.

3.3. Analysis of the Results

To evaluate the effectiveness of different modal decomposition methods, this study inputs the IMF
components from the EMD, EEMD, and CEEMD algorithms, along with the normalized training data, into both
LSTM and back propagation (BP) models, creating six combined forecasting models: EMD-BP, EMD-LSTM,
EEMD-BP, EEMD-LSTM, CEEMD-BP, and CEEMD-LSTM. A comprehensive comparison of these six models
is then conducted, with the results presented in Table 1.

Table 1 is the corresponding results [29,30]. Generally speaking, the EEMD-LSTM models achieve the
highest R* values, while demonstrating the lowest RMSE and MAE values. This indicates that the proposed

method performs better than other comparative models, highlighting its effectiveness in predicting e-commerce

sales data.
Table 1. Comparative Analysis Table of Different Prediction Methods.
Prediction Method R’ RMSE MAE
EMD-BP 0.8630 69.2230 61.4951
EMD-LSTM 0.9146 392848 31.2912
CEEMD-BP 0.9385 37.5875 29.0713
CEEMD-LSTM 0.9467 34.0916 27.3481
EEMD-BP 0.9638 29.1603 20.3052
EEMD-LSTM 0.9932 23.0854 15.2966

Specifically, the R* of the EEMD-LSTM combined model is the highest among the various methods,
improving by nearly 3% compared to the EEMD-BP method, about 5% over the CEEMD-LSTM method, and
approximately 6% over the CEEMD-BP method. This indicate that the proposed method provides the best
fitness, effectively predict the sales for Amazon’s e-commerce clothing products. Moreover, the EEMD-LSTM
model achieves the lowest RMSE and MAE across all methods. Specifically, the corresponding RMSE and
MAE of the EEMD-LSTM is approximately 20% and 25% lower than that of the EEMD-BP method, about 32%
and 44% lower than that of the CEEMD-LSTM method, and around 38% and 47% lower than that of the
CEEMD-BP method. These results further highlight the advantages of the proposed method in terms of

prediction accuracy and affirm its robust identification capability.

_8-
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In addition, the LSTM model outperforms the BP model in capturing the complex and highly nonlinear
features of e-commerce sales data, demonstrating its superior prediction accuracy in the test. By employing the
proposed method, a comparative analysis of the sales data from 1 December to 3 December 2021 were
conducted (Figure 6). The results illustrate that the model fits the data exceptionally well, with only minor errors
observed at certain extreme points, such as local maximum and minimum sales [31]. Overall, the predicted data
closely aligns with the actual data, confirming the practical effectiveness of the constructed EEMD-LSTM
model. By applying the LSTM neural network prediction model to analyze sales sample data for a specific e-
commerce clothing product on Amazon from 1 December to 3 December 2021, we achieved a prediction

accuracy of 91%.

—— True value

600000 - —— Predicted value

500000 A

400000 A
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100000 +
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Figure 6. EEMD-LSTM Combined Model Prediction Results.

4. Conclusions

This paper combines the LSTM model with several advanced data decomposition algorithms to develop
forecasting models, including EMD-LSTM, EEMD-LSTM, etc., for predicting Amazon clothing sales. The
results demonstrate that the EEMD-LSTM model outperforms other methods:

1. Among the six forecasting methods analyzed, the EEMD-LSTM model achieved the highest R* score and
the lowest RMSE and MAE values, confirming its superior predictive accuracy for the Amazon clothing sales
dataset.

2. A test was conducted using sales data from 1 December to 3 December 2021. The EEMD-LSTM model
maintained high accuracy, with predicted values closely matching the actual data. Its prediction accuracy

reached 91%, further confirmed the model’s reliability and effectiveness in practical applications.
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