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Abstract: This study addresses the critical need to evaluate the security of deep learning models in fingerprint 

recognition systems, by testing their vulnerability to misidentification. While deep learning techniques have 

significantly advanced biometric authentication, the potential for misclassification and unauthorized access due 

to synthetic fingerprints has not been thoroughly investigated. To this end, we propose an enhanced Deep 

Convolutional Generative Adversarial Network (DCGAN) with attention mechanisms to generate realistic 

synthetic fingerprint images. These images are then used to test the robustness and security of a Siamese 

Network employed for fingerprint matching. Experimental results demonstrate that the AE-DCGAN model 

outperforms traditional DCGANs in image quality and precision, achieving higher accuracy in generating 

realistic fingerprint textures. Additionally, the Siamese Network, when tested with synthetic fingerprints, reveals 

certain vulnerabilities, highlighting potential risks in security. Grad-CAM visualizations are employed to further 

understand the model's attention during fingerprint matching, providing insights into how the model focuses on 

key fingerprint features. The proposed approach aims to investigate both the generation and recognition phases, 

contributing to improved robustness and reliability in fingerprint-based systems.
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Introduction

Biometric authentication, which identifies individuals by quantitatively analyzing physical and behavioral 

traits, has become a cornerstone of identity verification and access control in computer science. Among various 

biometric techniques, fingerprint recognition stands out due to its unique features, stability, and ease of 

acquisition, making it a reliable and extensively used method. Applications of fingerprint recognition span 

diverse fields, including law enforcement, access control systems, and financial transactions. Its distinctive and 

enduring nature also makes fingerprints invaluable in forensic science and criminal investigations.

Recently, deep learning techniques [1–3], such as Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs), have been applied to enhance fingerprint recognition systems. However, the limited 

availability of diverse and large-scale publicly accessible datasets has hindered progress in developing and 
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evaluating current machine learning or deep learning models [4–6]. Furthermore, insufficient attention has been 

paid to the security vulnerabilities of deep learning-based fingerprint systems, leaving them susceptible to 

adversarial attacks that could lead to incorrect recognition or unauthorized access.

Earlier fingerprint recognition methods primarily relied on digital image processing, focusing on the 

extraction of minutiae points—distinctive features such as ridge endings and bifurcations. Significant research, 

such as the work by Jain et al., combined minutiae points with texture information to improve matching 

accuracy, demonstrating promising results [7]. However, minutiae extraction faced challenges when processing 

low-quality fingerprint images. To overcome these issues and further improve recognition performance, deep 

learning algorithms have increasingly been employed due to their superior capabilities in computer vision 

tasks [8–11]. For instance, Engelsma et al. developed DeepPrint, a CNN-based method that achieved a Rank-1 

accuracy of 97.9% on the NIST SD4 dataset [12]. Similarly, Cao et al. introduced a deep neural network for 

latent fingerprint search with successful results [13]. Despite these advancements, privacy concerns often restrict 

the availability of comprehensive public fingerprint datasets, limiting the potential of these algorithms [14]. This 

highlights the necessity for generating diverse and high-quality fingerprint datasets to improve training and 

evaluation processes. Fingerprint generation techniques can address this need by creating synthetic fingerprints 

to enhance model performance. Cappelli, for instance, proposed a method using directional image modeling to 

generate realistic fingerprint images [15]. Recently, deep learning models have also been utilized for fingerprint 

synthesis due to their excellent performance in various domains [16 – 19]. Engelsma et al. introduced a deep 

generator capable of producing realistic synthetic fingerprints, accompanied by a publicly available dataset [20]. 

However, while research has explored fingerprint generation and matching, the security implications of using 

synthetic fingerprints to compromise recognition systems remain underexplored. To address these challenges, 

this study proposes an enhanced Deep Convolutional Generative Adversarial Network (DCGAN) incorporating 

attention mechanisms to generate realistic fingerprint images shown in Figure 1 [21] . Furthermore, it constructs 

a Siamese Network used for fingerprint matching and evaluates its robustness against security threats by 

leveraging the synthetic fingerprints generated by the DCGAN model [22].

This paper is organized as follows: Section 2 reviews related works in fingerprint recognition and 

generation. Section 3 outlines the workflow of the proposed method. Experimental results and their analysis are 

presented in Section 4. Lastly, Section 5 concludes the paper with a summary of findings.

Figure 1.　The procedure of the proposed framework in terms of fingerprint generation and security verification 
based on deep learning models.
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2. Literature Review

2.1. Fingerprint Recognition

Deep learning algorithms have emerged as a highly effective approach for fingerprint recognition in recent 

years [23–26]. These algorithms are inspired by the architecture and functionality of the human brain, enabling 

the development of models capable of learning complex patterns. Among these models, Convolutional Neural 

Networks (CNNs) have gained significant popularity in computer vision tasks, including biometric recognition. 

Recent advancements in fingerprint recognition research have further leveraged the capabilities of CNNs and 

ViTs. For example, Zeng et al. introduced a residual network to extract local features from fingerprint images, 

enhancing the conventional CNN structure [27]. Qiu et al. proposed a multi-stage interpretable fingerprint 

matching network, IFViT, leveraging Vision Transformers (ViT) to enhance pixel-level correspondence, global 

context understanding, and the interpretability of fixed-length fingerprint representations [28]. Similarly, 

Althabhawee et al. proposed an efficient fingerprint authentication model utilizing a deep Convolutional Neural 

Network (ConvNet) comprising fifteen layers [29]. The model operates in two stages: a preparation stage, which 

includes image collection, augmentation, and preprocessing, and a second stage focused on feature extraction 

and matching. The results demonstrated that this approach delivered superior matching performance for the 

given fingerprint features.

2.2. Fingerprint Generation

In the realm of fingerprint generation, deep learning models have shown potential due to their excellent 

performance from other domains [30–33], similar to their applications in fingerprint matching. For example, 

Xiong et al. proposed employing Distributed Data Parallel (DDP) frameworks to efficiently scale the training of 

deep learning models for synthetic fingerprint generation, enhancing training efficiency, data security, and 

managing large datasets while addressing GPU underutilization challenges [34]. Fahim et al. used a combination 

of residual networks and spectral normalization to create fingerprints [35]. Their method, featuring average 

residual connections, was more effective in preventing vanishing gradients compared to traditional residual 

connections. Spectral normalization helped stabilize weight variation within the network. They also used the 

Multi-scale Structural Similarity (MS-SSIM) metric to evaluate the diversity of the generated samples, 

indicating that their approach could produce a varied set of images while reducing the risk of mode collapse. 

Minaee et al. developed a machine learning framework based on Generative Adversarial Networks (GANs), 

enhancing it with a specific regularization term in the loss function. The model's performance was measured 

using the Frechet Inception Distance (FID), showing significant quantitative improvements [36].

3. Method

3.1. DCGAN-Based Fingerprint Generation

The effectiveness of deep learning models has been widely demonstrated [37 – 39]. Thereinto, generative 

adversarial networks are a type of deep learning model designed to produce synthetic data that closely mimics a given 

dataset. They consist of two neural networks: the generator and the discriminator, as illustrated in Figure 2. The 

generator starts with random noise as input and creates new data samples, while the discriminator evaluates both real 

and generated data, classifying them as authentic or synthetic. During training, the generator aims to produce data 

that can convincingly deceive the discriminator, while the discriminator continuously improves its ability to 

distinguish real data from fake. This adversarial training process pushes the generator to create increasingly realistic 

data as it refines its ability to replicate the characteristics of genuine data. The discriminator, in turn, becomes more 

adept at identifying synthetic samples. Over time, this dynamic leads to the generation of highly realistic data, making 

GANs useful for various applications, including image synthesis, music composition, and natural language processing.
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Figure 2.　The structure of the GAN.

However, GANs face several well-documented challenges, including unstable training dynamics, mode 

collapse, and difficulty in generating high-quality outputs. Unstable training often arises due to the adversarial 

nature of GANs, where the generator and discriminator simultaneously compete to optimize opposing 

objectives, sometimes leading to oscillations or divergence. Mode collapse occurs when the generator produces 

a limited variety of outputs, failing to capture the diversity present in the training data. Additionally, GANs 

struggle with generating high-resolution images, as traditional GAN architectures are often inadequate for 

capturing detailed spatial information or complex patterns in data.

To address the traditional challenges of GANs, Deep Convolutional GANs (DCGANs) were introduced as a 

specialized GAN variant that incorporates deep convolutional neural networks for both the generator and 

discriminator. DCGANs offer several improvements: (1) Enhanced stability: By adhering to specific 

architectural principles, such as batch normalization and the exclusion of fully connected layers, DCGANs 

achieve more stable training dynamics compared to traditional GANs. (2) Improved image generation: The use 

of convolutional layers enables DCGANs to better capture spatial information, leading to higher-quality and 

more realistic image generation. (3) Greater scalability: DCGANs are capable of handling larger and more 

complex datasets, making them suitable for a wider range of applications.

3.2. The Introduction of Attention Mechanisms in SENet

In this study, the Squeeze-and-Excitation (SE) block is incorporated into the proposed DCGAN to enhance 

the realism of generated fingerprint images. Introduced by Hu et al. in 2017 [40], the Squeeze-and-Excitation 

Network (SENet) is a deep learning architecture designed to recalibrate channel-wise feature responses 

adaptively by modeling interdependencies among channels. This is achieved through the SE block, a lightweight 

gating mechanism that integrates seamlessly into various CNN architectures.

The SE block introduces a novel attention mechanism to amplify the representational power of CNNs by 

selectively emphasizing critical channels and suppressing irrelevant ones. It operates through two key steps: 

squeeze, which captures global channel dependencies, and excitation, which recalibrates the channel responses. 

These recalibrated features are then used to refine the output in subsequent layers. Building upon this attention 

mechanism, this study integrates the SE block into the generator of the GAN framework to improve the quality 

of generated fingerprint images. By incorporating the SE block, the generator can prioritize key features, such as 

minutiae points or pore details, that are crucial for fingerprint representation. This selective focus enhances the 

generator’s ability to produce high-quality images by adaptively weighting important regions or features within 

the input data. The attention mechanism allows the generator to assign varying levels of importance to different 

spatial regions, enabling it to capture intricate details and spatial relationships more effectively. As a result, the 

generated fingerprint images exhibit greater realism and finer detail, closely resembling authentic data. 

Conversely, this study does not apply the attention mechanism to the discriminator. This decision is based on the 

discriminator’s inherent ability to distinguish real from synthetic data, which is less critical for improving the 
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realism of the generated images. Instead, the emphasis is placed on refining the generator’s capacity to produce 

realistic outputs. By focusing the attention mechanism on the generator, the proposed framework effectively 

enhances the quality of fingerprint generation, achieving the primary objective of this study.

3.3. The Introduction of Siamese Network

Siamese networks are a class of neural networks designed for tasks that require similarity comparison 

between two inputs, such as image matching, signature verification, and biometric authentication [41]. Unlike 

traditional neural networks, which predict class labels or regression values, Siamese networks output a similarity 

score that quantifies the relationship between two inputs. The architecture consists of two identical subnetworks 

that share the same parameters, ensuring that both inputs are processed symmetrically and comparably. Each 

subnetwork in a Siamese architecture extracts features from one of the inputs. These features are then passed to 

a similarity function, such as the Euclidean distance or cosine similarity, to compute the relationship between the 

two inputs. The shared weights enable the network to learn invariant feature representations, making it robust to 

variations such as orientation, scale, and noise in the input data. Siamese networks are particularly effective in 

scenarios with limited labeled data. By learning to compare pairs of inputs rather than classify individual 

instances, they significantly expand the dataset through the creation of multiple input pairs. This characteristic 

makes them ideal for applications in biometrics, where labeled data is often scarce.

In this study, fingerprint images generated by the proposed method are sequentially introduced into the 

Siamese network to simulate an attack scenario, matching them against an existing fingerprint database. This 

evaluation assesses the security of the proposed network and its susceptibility to compromise by synthetic 

fingerprints. The primary similarity metric used is the Euclidean distance. If the similarity score between a 

generated fingerprint and an authentic fingerprint in the database falls below a predefined threshold, a false 

match is recorded, highlighting the system's potential security vulnerabilities and the need for further refinement.

The proposed Siamese network leverages the VGG and MobileNet models as its backbone architectures [42,43]. 

VGG, developed by the Visual Geometry Group at the University of Oxford, is a deep CNN designed for image 

recognition and classification tasks. Notable for its success in the 2014 ILSVRC, VGG employs small 

3 × 3 convolutional filters stacked in multiple layers, with variants such as VGG-16 and VGG-19. However, its high 

computational demands limit its practicality in mobile or real-time applications. In contrast, MobileNet, developed 

by Google, is a lightweight CNN architecture optimized for mobile and embedded vision applications. MobileNet 

achieves a balance between computational efficiency and accuracy by using depthwise separable convolutions, which 

significantly reduce the number of parameters and computational cost without compromising performance. With 

options for different width multipliers and resolutions, MobileNet offers flexibility to meet various computational 

and memory constraints, making it well-suited for resource-constrained environments.

4. Experimental Results and Discussion

4.1. Datasets Description

The FVC2002 and FVC2004 competitions serve as notable benchmarks in fingerprint matching research, 

providing access to eight fingerprint databases. Each database contains 800 fingerprint images obtained from 

100 distinct individuals. For this study, only genuine fingerprint databases were utilized, specifically FVC2002 

DB1, DB2, and DB3, along with FVC2004 DB1, DB2, and DB3. Synthetic fingerprint databases, such as 

FVC2002 DB4 and FVC2004 DB4, were excluded from the analysis. Consequently, the dataset employed in this 

study comprises 4800 fingerprint images sourced from six databases. Sample images from the collected dataset 

are shown in Figure 3.
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Figure 3.　The sample images used in this study.

4.2. The Performance of Fingeprint Generation

The first row of Figure 4 illustrates fingerprint images generated by the conventional DCGAN model, while 

the second row displays those produced by the proposed AE-DCGAN model. Experimental results indicate that 

as training iterations increase, the quality of fingerprint images generated by both models improves 

progressively. Initially, at epoch 0, the generated images appear as grid-like patterns, as the untrained models 

simply map input 1-D noise into 2-D images without meaningful features. However, by epoch 10, both models 

begin to capture basic fingerprint textures, such as their approximate shape, from the FVC dataset. At epoch 

500, the AE-DCGAN model significantly outperforms the conventional DCGAN, producing fingerprint images 

with high precision, whereas the DCGAN model captures only a rudimentary contour.

Figure 4.　The visualization of generated fingerprint images during different stages.
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Additionally, the AE-DCGAN model demonstrates faster learning of fingerprint textures, including shape 

and structure, in the early training stages compared to the DCGAN model. This highlights the superior 

generative performance of the AE-DCGAN model. Figure 5 further showcases additional cases, revealing that 

the DCGAN-generated fingerprints often lack coherence in texture and exhibit local omissions, while the AE-

DCGAN-generated fingerprints display more consistent texture, better clarity, and no missing regions.

Several factors contribute to the success of the AE-DCGAN model in this study: (1) Incorporation of 

attention mechanisms: The attention mechanism allows the AE-DCGAN generator to prioritize key fingerprint 

components, such as minutiae and ridges, during training. This focus is evident in the enhanced fingerprint 

details shown in Figures 4 and 5. In contrast, the conventional DCGAN fails to capture these critical features, 

resulting in chaotic ridge patterns. (2) Reduction of missing regions: The AE-DCGAN model effectively 

allocates attention to essential features, preserving complete fingerprint ridge structures. In comparison, the 

DCGAN model often misinterprets irrelevant background noise, such as white spaces, as meaningful features, 

leading to local area omissions in the generated images. However, in some instances, the AE-DCGAN model 

may also produce fingerprint images with blurred and inconsistent textures, as shown in Figure 6. However, 

these cases are relatively rare and do not significantly impact the overall performance of the model.

4.3. The Performance of Fingerprint Matching

Figure 7 showcases the performance of two classical convolutional neural networks in evaluating identical 

and distinct fingerprint pairs within the test set. Ideally, an effective model should yield low Euclidean distance 

scores for identical fingerprint pairs, indicating high similarity, and higher scores for distinct pairs, signifying 

low similarity. According to the results, the MobileNet model achieves an average Euclidean distance of 0.93 for 

Figure 5.　More examples generated from DCGAN and AE-DCGAN model.

Figure 6.　Failure examples generated from the AE-DCGAN model.
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identical fingerprint pairs and 1.25 for distinct pairs. In contrast, the VGG model records 0.38 for identical pairs 

and 7.77 for distinct pairs. Notably, the VGG model outperforms MobileNet, demonstrating its superior 

discriminative and predictive capabilities in fingerprint matching tasks.

The superior performance of the VGG model can largely be attributed to its greater number of parameters, 

enabling it to capture and learn more intricate features from images [44,45]. While MobileNet relies on depthwise 

convolutions and is optimized for resource-constrained environments, such as mobile devices [46], its reduced 

parameter count limits its ability to handle complex feature-rich datasets like fingerprints. In comparison, the 

parameter-rich VGG model is better suited for tasks requiring detailed feature extraction, leading to enhanced 

performance in fingerprint recognition.

Furthermore, this study also evaluates the reliability and security of Siamese networks in fingerprint 

matching by testing generated fingerprint images against genuine ones stored in the database. The trained VGG-

based Siamese network is utilized for prediction, and two illustrative cases are provided in Figure 8. In these 

examples, the left fingerprint images are generated by the AE-DCGAN model, while the right images are from 

the FVC dataset. In the first case, the Siamese network assigns a Euclidean distance of 0.021, significantly lower 

than the average similarity score of 0.38 observed earlier. This erroneously identifies the fingerprints as 

belonging to the same individual. Similarly, in the second case, the generated and real fingerprints receive a 

distance score of 0.032, leading to another incorrect match. These results indicate that the trained Siamese 

network carries certain security and reliability risks when handling generated fingerprint images, underscoring 

the need for further refinement to improve its robustness and resilience against adversarial scenarios.

Figure 9 further illustrates the Grad-CAM visualization of the attention areas during the fingerprint 

matching prediction process [47–49]. The heatmaps highlight the regions that the matching model focuses on 

when making predictions. The red areas indicate regions of high attention, while the blue areas indicate regions 

of lower attention. The visualization clearly shows that the model concentrates on specific fingerprint features, 

such as ridges and minutiae points, during the matching process. This suggests that the model is effectively 

learning to focus on the most distinguishing features for comparison. The use of Grad-CAM provides an 

intuitive understanding of the model's behavior and helps verify that the model is focusing on meaningful 

fingerprint regions, thereby improving the interpretability of the matching results.

Figure 7.　Average predicted distance of Siamese network by backbone model.
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Figure 8.　Predicted results using generated and genuine fingerprint image inputs.

4.4. Discussion

This study explores the potential of deep learning models for fingerprint generation and matching, 

demonstrating notable advancements but also revealing several limitations and areas for future improvement. 

The use of genuine fingerprint datasets from FVC2002 and FVC2004 competitions provides a strong benchmark 

for evaluating model performance. However, the exclusion of synthetic datasets, such as FVC2002 DB4 and 

FVC2004 DB4, limits the diversity of the data and potentially restricts the generalizability of the findings. 

Expanding the dataset to include synthetic and real-world fingerprints from various populations and 

environments would enhance the robustness of the proposed models. The AE-DCGAN model shows significant 

improvements in generating high-quality fingerprint images compared to conventional DCGAN. It effectively 

learns ridge structures and minutiae while reducing local omissions. Nonetheless, limitations remain, as some 

generated images exhibit blurred and inconsistent textures. These issues, while infrequent, indicate that the 

model may still struggle with capturing finer details, such as pores, in certain cases. Advanced generative 

architectures, such as transformer-based models or diffusion models, could be explored to further improve the 

quality and coherence of generated fingerprints. Additionally, optimizing the training process to better handle 

these inconsistencies would contribute to more reliable outputs. The VGG-based Siamese network demonstrates 

superior performance in fingerprint matching compared to MobileNet, particularly in identifying identical and 

distinct fingerprint pairs. However, there are notable risks associated with matching generated fingerprints. As 

shown in Figure 8, the network occasionally misclassifies generated fingerprints as genuine, assigning low 

Euclidean distances and resulting in false matches. This highlights potential security vulnerabilities, especially 

in adversarial scenarios where generated fingerprints might be exploited to spoof authentication systems. 

Addressing these risks through adversarial training, feature regularization, or mechanisms to distinguish 

between genuine and generated fingerprints is critical to enhancing the model's reliability. In addition, some 

advanced methods from other domains can be also considered for further improving the performance of models.

Figure 9.　The Grad-CAM visualization of the attention when predicting.

--9



Jiahuai M, et al. J. Comput. Methods Eng. Appl. 2024, 4(1)

5. Conclusion

This study demonstrates the effectiveness of using an enhanced DCGAN with attention mechanisms for 

generating high-quality fingerprint images and employing a Siamese Network for matching. The AE-DCGAN 

model achieves superior generative performance compared to conventional DCGANs, producing clearer and 

more consistent fingerprint textures. However, the security evaluation reveals that the Siamese Network is 

susceptible to misidentifying synthetic fingerprints as genuine, exposing vulnerabilities in deep learning-based 

fingerprint recognition systems and indicating the need for further refinement to improve model robustness. 

Grad-CAM visualizations provide valuable insights into the model's focus during fingerprint matching, 

emphasizing the importance of interpretability in enhancing system security and reliability. Future work will 

focus on improving the discriminator's robustness, incorporating more diverse datasets, and exploring advanced 

attention mechanisms to further enhance the model's performance and security against adversarial threats.
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