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Abstract: Social media platforms have become pivotal for global communication and information exchange but 

are increasingly challenged by the proliferation of toxic comments. These comments, characterized by abusive, 

discriminatory, or harassing language, threaten user safety and well-being, necessitating efficient detection 

systems. This paper proposes a novel hybrid approach to detect social media toxic comments by combining the 

feature extraction capabilities of Long Short Term Memoery (LSTM) -based neural networks with multiple 

machine learning models, including Random Forest, Logistic Regression, and K-Nearest Neighbors. High-

dimensional feature representations from the neural network are integrated with predictions from traditional 

classifiers, and Random Forest optimizes the output weights to maximize performance. Evaluated on a Kaggle 

dataset, the proposed model achieves an accuracy of 89.78% and outperforms individual models in handling the 

complexity of toxic comments. However, challenges such as overfitting, computational overhead, and 

interpretability remain. Future work aims to address these limitations through improved data augmentation, 

explainability methods, and more scalable architectures.
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1. Introduction

Social media platforms have become essential for communication, social interaction, and information 

exchange across the globe [1–3]. However, with the increasing volume of user-generated content, the spread of 

harmful and offensive speech, such as toxic comments, has also risen significantly. Toxic comments [4,5], which 

can be abusive, threatening, discriminatory, or harassing in nature, pose serious challenges to online 

communities and platforms. Detecting and mitigating such toxic content is essential to create a safe and positive 

online environment for users.
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The need for effective social media toxic comments detection has become more apparent as online 

platforms, such as Twitter, Facebook, and YouTube, continue to grow. Toxic content can have detrimental effects 

on individuals, communities, and the broader social media ecosystem. For instance, it can lead to emotional 

distress, bullying, or even encourage violence in extreme cases. Therefore, detecting these comments efficiently 

is crucial for enforcing platform policies, maintaining user well-being, and promoting healthy discourse online. 

Automating the process of identifying toxic comments allows platforms to scale their moderation efforts, which 

would be impossible to achieve manually due to the vast amount of content uploaded daily. Effective detection 

systems can help flag offensive content for review or immediate removal, minimizing the harmful impact of 

such comments.

Traditional approaches to toxic comment detection, such as rule-based or keyword-based filtering [6 – 8], 

have shown limited success. While these methods can catch certain patterns, they often lack the flexibility 

needed to handle the complexity and diversity of natural language. For instance, a rule-based system might 

struggle to identify sarcasm, contextual nuances, or hidden toxic meanings in a comment. Furthermore, they 

typically require constant manual updates and can lead to over-blocking or under-blocking content, which 

hampers their accuracy. Computer science models, particularly those based on handcrafted features, have been 

proposed as an improvement over these rule-based systems [9–12]. For instance, Feng et al. proposed a hybrid 

framework for effective malware detection based on advanced computation methods [13]. These models rely on 

statistical features such as word frequencies, part-of-speech tags, and sentiment scores to classify 

content [14–16]. While these methods offer better flexibility, they still fall short when dealing with complex 

linguistic patterns, long-range dependencies, and context-specific toxicity in social media comments.

With the advancement of artificial intelligence (AI), particularly deep learning, the landscape of toxic 

comment detection has changed dramatically. AI models [17–19], especially those leveraging natural language 

processing (NLP), have been shown to outperform traditional approaches due to their ability to automatically 

learn from vast amounts of data and extract complex features. Neural network models, particularly Recurrent 

Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs), and Transformer-based models, have 

been successful in capturing the context and semantic meaning of words and phrases in text, which is vital for 

detecting nuanced toxic comments. Moreover, pre-trained models like Bidirectional Encoder Representations 

from Transformers (BERT) and Generative Pre-trained Transformer (GPT) have demonstrated exceptional 

performance in understanding and processing large-scale textual data. These models capture both local and 

global dependencies within the text, making them well-suited for tasks like sentiment analysis and toxic 

comment detection. Despite their success, these models often struggle with overfitting when trained on small 

datasets or when deployed in isolated systems that do not leverage external knowledge [20].

While AI models, particularly neural networks and traditional machine learning models, have been widely used 

for toxic comment detection, a major limitation of most existing approaches is their reliance on a single model. Single 

models, whether they are neural networks or machine learning classifiers like Random Forests [21–23], Support Vector 

Machines (SVMs) [24–26], or Logistic Regression [27, 28], often fail to exploit the full potential of multiple 

algorithms. Each model has its strengths and weaknesses, which means a single approach might excel in some aspects 

(e.g, capturing non-linear relationships in text) while falling short in others (e.g., generalization across diverse toxic 

comments). Many studies have focused on the application of a single model, such as training deep learning models 

or machine learning classifiers independently. However, these models often fail to generalize well to all types of toxic 

comments, leading to reduced performance in real-world applications. In practice, the diversity and complexity of 

toxic comments demand a hybrid approach that can leverage the strengths of various algorithms.

This paper proposes a novel integrated model for social media toxic comment detection shown in Figure 1, 

which combines high-dimensional feature representations learned by neural networks with the power of multiple 

traditional machine learning algorithms. The proposed approach uses LSTM-based neural networks [29,30] to 

generate rich, high-level feature representations of text data. These representations are then combined with 

predictions from Random Forest, K-Nearest Neighbors (KNN) [31,32], and Logistic Regression, allowing the 

model to learn a more robust and comprehensive decision function.
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Figure 1.　The workflow of the proposed model.

2. Literature Review

Toxic Comments Prediction

Aggression expressed through text is a multifaceted issue, which has attracted attention from various fields 

of study. The use of information technology to automatically identify aggressive language in texts has gained 

considerable interest. In this analysis, several types of aggression identified in existing literature are explored, 

such as hate [33], abusive language [34], toxicity [35], flaming [36], and hate speech [37]. Despite the variations 

among these forms of aggression, prior research provides valuable insights into strategies for identifying hostile 

interactions. Special emphasis is placed on the automatic identification of hate speech. For instance, 

Georgakopoulos et al. offer a concise, well-structured, and critical summary of the progress in automatic hate 

speech detection within natural language processing [37].

Various studies, especially those focusing on feature processing, have been conducted to improve the 

detection of toxic comments. Aggarwal and Zhai [38] explored how different transformations impact text 

classification by examining four distinct transformations and their combinations within the news and email 

domains. Their experimental results revealed that selecting the right combination of transformations could 

significantly enhance classification accuracy. Nobata and Tetreault [34] employed techniques such as 

normalizing numbers, replacing extremely long or unfamiliar words, and consolidating repeated punctuation 

into a single token. Haddadi et al. [39] discussed the importance of transformations in sentiment analysis, 

showing, through experiments with Support Vector Machines (SVM) on movie review data, that appropriate 

transformations and feature selection can lead to considerable improvements in accuracy. Their transformation 

methods included removing unnecessary whitespace, expanding abbreviations, stemming, eliminating stop 

words, and handling negations. On the other hand, other research tends to emphasize modeling approaches 

rather than focusing solely on transformations.

3. Method

3.1. Dataset Preparation

We received the dataset from Kaggle, which is focused on detecting toxic comments. The dataset includes several 

features, such as id, comment_text, toxic, severe_toxic, obscene, threat, insult, and identity_hate. The main goal of 

our analysis was to predict the toxicity of comments based on the text. We selected comment_text as the feature (X) 

and toxic as the target (y) for our prediction task. The original dataset contained 158,929 samples, which is a large 

number for analysis. Due to its size and the inherent challenges associated with handling such a large dataset, we 

selected a subset of 10,000 samples for our analysis. These samples were then split into training, testing, and validation 

sets. Specifically, 60% of the data was used for training, 30% for testing, and 10% for validation.

Since the data consists of textual information, we applied text vectorization using Term Frequency-Inverse 
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Document Frequency (TF-IDF) [40 – 42]. This technique converts the raw text data into numerical vectors, 

making it suitable for machine learning models. We limited the number of features to 10 through the vectorizer, 

which helps reduce the dimensionality of the data while preserving important information.

Additionally, the dataset exhibits a class imbalance issue shown in Figure 2, where the number of non-toxic 

comments greatly exceeds the number of toxic ones. This imbalance could lead to biased predictions, where the 

model might lean towards predicting “non-toxic” more often. To address this issue, we used Synthetic Minority 

Over-sampling Technique (SMOTE) [43, 44] to get the balanced data shown in Figure 3, which is a popular 

method for balancing datasets. SMOTE works by creating synthetic samples from the minority class, which 

helps improve the model’s ability to generalize across both classes. This method significantly enhances the 

performance of models when dealing with imbalanced datasets, as it ensures the minority class is better 

represented during training.

3.2. The Introduction of Used Machine Learning Models

3.2.1. LSTM Model

LSTM [45, 46] is a type of RNN designed to better capture long-term dependencies in sequential data. 

Unlike traditional RNNs, LSTMs are equipped with a memory cell that allows them to maintain information 

over long periods of time. This makes them particularly effective for tasks involving sequential data, such as 

text, speech, and time series forecasting. The architecture of an LSTM is designed to overcome the vanishing 

gradient problem that traditional RNNs often face, allowing it to learn long-range dependencies.

In our model, we have built a LSTM-based architecture for binary classification. Here’s a brief overview of 

its structure: (1) Embedding Layer: This is the first layer, which maps input sequences (such as words or tokens 

in text) into continuous vector representations of fixed size. The input data is transformed into embeddings, 

Figure 2.　The original data distribution of the label.

Figure 3.　The balanced data distribution of the label processed by SMOTE.
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which can then be used for further processing in the subsequent layers. (2) Bidirectional LSTM Layer: The next 

layer is a bidirectional LSTM, which processes the input sequence in both forward and backward directions. 

This helps the model capture information from both past and future states within the sequence, making it more 

powerful for sequential tasks. The LSTM units here have 16 memory units, and the activation function used is 

‘ tanh’ , which is standard for LSTM networks. (3) Fully Connected Layer: After the LSTM layers, a fully 

connected layer with 8 neurons and ReLU (Rectified Linear Unit) activation is added. This layer helps the 

model learn more complex relationships between the features extracted by the LSTM layer. (4) Output Layer: 

The final layer is a single neuron with a sigmoid activation function, suitable for binary classification. It outputs 

a value between 0 and 1, which represents the probability of the input sequence belonging to the positive class 

(toxic comments in this case).

3.2.2. Random Forest

Random Forest [47] is an ensemble learning algorithm that builds a collection of decision trees to improve 

predictive accuracy and robustness. It is based on the principle of bagging, which involves training multiple 

individual models on different subsets of the data and then combining their predictions to get a more reliable 

result. Each decision tree in a Random Forest is trained on a random subset of the data, generated by sampling 

with replacement, known as bootstrap sampling. Additionally, when making splits at each node, Random Forest 

selects a random subset of features, rather than considering all features, which adds diversity to the trees and 

further helps reduce overfitting. Once the trees are built, their predictions are aggregated: for classification tasks, 

the majority vote is taken from all the trees, and for regression tasks, the predictions are averaged. This approach 

makes Random Forest highly robust, as it mitigates the risk of overfitting, making it a powerful tool for both 

classification and regression tasks, especially in complex and noisy datasets.

3.2.3. Logistic Regression

Logistic Regression [48] is a statistical model commonly used for binary classification tasks, where the goal 

is to predict one of two possible outcomes. Despite the name “regression,” it is primarily used for classification 

problems. The model works by estimating the probability that a given input belongs to a particular class using a 

logistic (sigmoid) function. This function maps the input features to a value between 0 and 1, representing the 

probability of the positive class. Logistic Regression is based on a linear relationship between the input features 

and the log-odds of the target class, making it computationally efficient and easy to interpret. It is widely used in 

various applications such as medical diagnoses, marketing, and financial risk prediction, where the outcome is a 

binary decision, such as “yes” or “no”.

3.2.4. K-Nearest Neighbors

K-Nearest Neighbors (KNN) [49] is a simple, non-parametric algorithm used for both classification and 

regression tasks. The idea behind KNN is straightforward: when making a prediction for a new data point, the 

algorithm finds the ‘K’  training samples that are closest to the point in question, using a distance metric like 

Euclidean distance. The class label (for classification) or the value (for regression) is then determined based on 

the majority class or average value of these nearest neighbors. KNN is particularly useful when the decision 

boundary between classes is irregular and complex, as it makes predictions based on local patterns in the data 

rather than assuming a global structure. However, KNN can be computationally expensive, especially with large 

datasets, as it requires calculating the distance between the new point and all points in the training set. Despite 

this, it remains a popular choice due to its simplicity and effectiveness, particularly in smaller datasets or when 

the data has clear local structures.

3.3. Multi-Model Fusion Strategy for Toxic Comment Prediction

In our research, we proposed a method that first uses a LSTM neural network to generate high-level 

representations from the data, and then feeds these representations into multiple traditional machine learning 
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models for further training and prediction. Specifically, the process is as follows: (1) First, we trained a neural 

network using the raw data. The neural network learns complex features from the data and generates high-level 

representations, which capture intricate patterns and relationships that may not be easily identified by simpler 

models. (2) Next, we extracted the high-level representations from the trained neural network and used these 

representations as new features. These new features were then fed into multiple traditional machine learning 

models—including Random Forest, KNN, and Logistic Regression—to train them and generate their respective 

predictions. (3) Finally, we fused the outputs from these machine learning models to make a final prediction. By 

combining the results from different models, we aimed to benefit from the strengths of each model and improve 

the overall performance, resulting in a more robust and accurate prediction.

4. Results and Discussion

4.1. The Performance of Different Machine Learning Models

Figure 4 shows the training curves for an LSTM model, detailing both accuracy and loss over the training 

epochs. On the left, the accuracy graph presents the training accuracy (solid blue line) and validation accuracy 

(dashed orange line) across 100 epochs. The training accuracy begins at around 55% and quickly stabilizes to 

just above 65%, showing minimal variance thereafter. The validation accuracy, after an initial spike, also 

stabilizes but fluctuates slightly more than the training accuracy, with values oscillating around 85%. The 

discrepancy between the training accuracy and validation accuracy is primarily due to the differences in data 

distribution caused by the balancing approach used during training. In the training set, the imbalance in class 

distribution was addressed by duplicating samples from the minority class to achieve a more balanced 

representation. However, this balancing method artificially altered the training data and did not reflect the true 

distribution of the dataset. In contrast, the validation and test sets were left unchanged to preserve their original 

class distributions, ensuring that the model’s performance could be evaluated under real-world conditions. As a 

result, the validation set’s accuracy is higher because it closely aligns with the ultimate goal of achieving 

optimal performance on unbalanced, real-world data. On the right, the loss graph depicts the training loss (solid 

green line) and validation loss (dashed red line) over the same epoch range. The training loss shows a steep 

decrease in the initial epochs and then levels off at around 0.66, indicating a plateau where further training 

shows little improvement in reducing loss. The validation loss, on the other hand, demonstrates significant 

variance, with sharp peaks and troughs, generally hovering around 0.67 to 0.71. This could suggest that the 

model is experiencing some overfitting to the training data, as evidenced by the higher and more volatile 

validation loss compared to the more stable and lower training loss.

Figure 4.　The training curve of the LSTM model.
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The confusion matrices in Figure 5 provide insight into the classification performance of the various models 

and combinations. The standalone LSTM performs reasonably well in identifying non-toxic comments but 

struggles with toxic comments, leading to a noticeable number of false negatives. When features are passed to 

other machine learning models, improvements are observed. For instance, combining LSTM with Random 

Forest (LSTM + RF) slightly improves the detection of toxic comments, as fewer false negatives are observed. 

Similarly, the LSTM + LR model further enhances the balance between true positives and false negatives, 

indicating better handling of toxic samples. However, the LSTM + KNN combination shows weaker 

performance, particularly in identifying toxic comments, as reflected in the higher number of misclassifications.

Table 1 and Figure 6 further quantify the performance across several metrics. The recall of the fusion model 

is comparable to other combinations like LSTM + RF and LSTM + LR, indicating consistent identification of 

toxic comments. Importantly, the fusion model attains the highest accuracy of 0.8978, significantly 

outperforming individual models and partial fusions. This demonstrates its robustness and effectiveness in 

handling the complexities of social media comment classification. While the F1-score remains modest at 0.2070, 

it is the highest among all models, highlighting the fusion model’s ability to balance precision and recall 

effectively.

Overall, these results underscore the potential of the proposed approach in the domain of toxic comment 

detection. The integration of LSTM for feature extraction and the fusion of traditional machine learning models 

allows the system to capture the nuanced characteristics of social media comments. The final optimization step 

using Random Forest ensures that the model benefits from the complementary strengths of individual classifiers, 

leading to superior overall performance. This approach provides a promising direction for tackling the 

challenges of toxic comment detection in social media, where the balance between precision, recall, and 

Figure 5.　The confusion matrix of different models.
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accuracy is critical for real-world applications.

4.2. The Influence of n_estimators on the Model Performance

Figure 7 illustrates the effect of the number of estimators (n_estimators) in the Random Forest on the test 

accuracy of the proposed fusion model for social media toxic comments detection. Since Random Forest is 

responsible for determining the optimal weights for combining outputs from multiple machine learning models, 

the parameter n_estimators, which represents the number of trees in the forest, plays a critical role in influencing 

the final performance. As shown in the figure, the test accuracy exhibits a sharp increase as n_estimators grows 

from 10 to 200, indicating that a higher number of trees significantly enhances the model’s ability to generalize. 

The accuracy peaks at around 0.90 when n_estimators reaches 200, suggesting that this is the optimal setting for 

the fusion model in the given task. Beyond this point, as the number of estimators increases to 300 and 500, the 

test accuracy stabilizes, showing minimal variation and maintaining a high level of performance. This 

Table 1.　The performance of different models in the testing dataset evaluated by various metrics.

Model Name

LSTM

LSTM + RF

LSTM + LR

LSTM + KNN

LSTM + RF + LR + KNN

Precision

0.2273

0.2606

0.2634

0.2973

0.2677

Recall

0.1656

0.1623

0.1623

0.0364

0.1688

Accuracy

0.8593

0.8693

0.8700

0.8943

0.8978

F1-Score

0.1916

0.2000

0.2008

0.0649

0.2070

Figure 6.　The performance of different models in the testing dataset.
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stabilization suggests that adding more trees beyond a certain point does not provide significant additional 

benefits and could lead to diminishing returns in terms of computational efficiency.

4.3. Discussion

While the proposed fusion model combining high-dimensional neural network representations with multiple 

traditional machine learning algorithms has demonstrated promising results in social media toxic comments 

detection, there are still notable limitations that warrant discussion. (1) Overfitting Risks: The integration of 

multiple models and the use of Random Forest for weighting may inadvertently introduce overfitting to the 

training data, particularly when the feature set from the LSTM is high-dimensional. This could limit the 

generalizability of the model when applied to new datasets. (2) Complexity and Interpretability: The fusion 

process, which involves multiple layers of model integration and optimization, adds significant complexity to 

the system. While Random Forest provides some interpretability by outputting feature importances, the overall 

model remains challenging to interpret, especially in high-stakes applications where transparency is critical. (3) 

Computational Costs: Training the LSTM for feature extraction and subsequently combining predictions from 

multiple machine learning models increases computational overhead. This may limit the model’s scalability and 

deployment in resource-constrained environments.

5. Conclusion

Toxic comments on social media can lead to emotional distress and disrupt online discourse, making their 

detection a pressing issue. Traditional methods like keyword-based filtering lack the sophistication to handle the 

nuanced nature of toxic language, such as sarcasm and contextual toxicity. While machine learning approaches 

improve flexibility, they still struggle with long-range dependencies and complex linguistic patterns. Deep 

learning models, particularly LSTMs and Transformer-based architectures, have revolutionized toxic comment 

detection by leveraging their ability to capture semantic and contextual relationships within text. Despite their 

success, reliance on single models often leads to reduced generalizability and suboptimal performance. To 

overcome these challenges, this study introduces a hybrid fusion model that combines neural network-extracted 

features with the strengths of Random Forest, Logistic Regression, and KNN. By optimizing the weighting of 

individual model outputs with Random Forest, the proposed system achieves higher accuracy and a better 

balance between precision and recall. However, the integration of multiple models introduces computational 

complexity and risks of overfitting. Future research will explore advanced explainability techniques, lightweight 

architectures, and data augmentation strategies to enhance robustness and scalability, paving the way for more 

effective toxic comment detection systems in diverse online environments.

Figure 7.　The influence of n_estimator on performance of the proposed model.
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