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Abstract: Pharmacological recommendations are critical for ensuring patient safety and treatment efficacy, yet 

traditional methods often struggle with inaccuracies and limited adaptability to new knowledge. To address these 

challenges, this paper proposes a novel Self-Reflective Retrieval-Augmented Framework for reliable 

pharmacological recommendations. The framework incorporates three key innovations: a self-reflective 

mechanism for dynamic error detection and correction, a pharmacological memory bank for long-term reasoning 

and knowledge accumulation, and a RAG-enhanced retrieval module to dynamically integrate up-to-date 

external knowledge during recommendation generation. Experiments on datasets from DrugBank and FDA 

adverse event reporting systems demonstrate that the proposed framework significantly improves 

recommendation accuracy, with the full model achieving a 92.3% accuracy and outperforming state-of-the-art 

methods across multiple evaluation metrics. This research provides a robust and adaptive solution for 

pharmacological recommendation tasks, paving the way for safer and more effective decision-making in healthcare.

Keywords: Retrieval-Augmented Generation; artificial intelligence; pharmacological recommendations; deep 

learning

1. Introduction

Pharmacological recommendations are critical for ensuring patient safety and optimizing treatment 

outcomes. With the increasing complexity of medical treatments and the proliferation of new drugs, providing 

accurate and timely drug recommendations has become a significant challenge. Traditional recommendation 

methods, including rule-based systems and collaborative filtering approaches, often fail to adapt to rapidly 

evolving pharmacological knowledge and struggle to handle complex drug interactions. Furthermore, errors in 

pharmacological recommendations, such as contraindicated drug combinations or inappropriate dosages, can 

lead to severe adverse effects, posing risks to patient safety.

Recent advances in deep learning and natural language processing have enabled significant improvements in 

recommendation systems, particularly in integrating structured and unstructured data sources. However, pre-

trained models frequently rely on static knowledge, making themill-suited for tasks requiring up-to-date medical 

information or long-term reasoning. Additionally, the lack of mechanisms for dynamic error correction and self-

improvement further limits their applicability in sensitive domains such as healthcare.
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To address these challenges, this paper introduces a novel Self-Reflective Retrieval-Augmented Framework 

for reliable pharmacological recommendations. The proposed framework is designed to overcome key 

limitations of existing methods by:

● Incorporating a self-reflective mechanism to dynamically detect and correct errors in generated 

recommendations, ensuring higher reliability and safety.

● Utilizing a pharmacological memory bank that accumulates validated knowledge and feedback over 

time, enabling long-term reasoning and improved adaptability.

● Integrating a RAG-enhanced retrieval module to dynamically incorporate up-to-date external knowledge, 

addressing the limitations of static pre-trained models.

The remainder of this paper is organized as follows. Section 2 provides a detailed explanation of the 

methodology, including the self-reflective mechanism, pharmacological memory bank, and RAG-enhanced 

retrieval module. Section 3 describes the experimental setup, including datasets and evaluation metrics, followed 

by comprehensive ablation studies and comparisons with state-of-the-art methods. Finally, Section 4 concludes 

with key findings and discusses future research directions.

2. Related Work

2.1. Self-Reflective Mechanisms and Long-Term Reasoning

The integration of self-reflective mechanisms and long-term reasoning capabilities has been a significant 

focus in advancing RAG frameworks. Works like ReAct [1] and Reflexion [2] have highlighted the importance 

of feedback loops in enhancing the reasoning and acting capabilities of LLMs. By incorporating self-reflection 

and external observations, these frameworks address challenges such as error propagation and the lack of 

dynamic adaptability. Similar self-reflective techniques have been explored in Retrieval-Augmented Generation 

(RAG) models, where iterative refinement can enhance factual accuracy [3–7]. In the context of pharmacological 

recommendations, self-reflective mechanisms can dynamically detect and correct errors in generated 

recommendations, ensuring higher reliability and safety.

Additionally, the use of a pharmacological memory bank, as proposed in our framework, enables long-term 

reasoning by accumulating validated knowledge and feedback over time. Memory-based retrieval and reasoning 

frameworks have been explored in various medical applications [8–11], where continuous learning from past 

cases helps in improving recommendation accuracy. By leveraging a structured memory mechanism, our 

framework avoids repeating past mistakes and adapts to complex or rare cases, enhancing both precision and 

generalization in drug recommendation.

The integration of search algorithms and reasoning capabilities has been a significant focus in advancing 

large language models (LLMs). Methods like chain-of-thought (CoT) prompting [12] and Tree-of-Thought 

(ToT) frameworks [13] have demonstrated the importance of generating structured reasoning paths for solving 

complex tasks. These approaches align closely with retrieval-augmented frameworks like SR-RAG, where 

reasoning over external knowledge is critical for improving accuracy and adaptability. Furthermore, structured 

search processes in retrieval-based reasoning [14] have been shown to refine knowledge retrieval and decision-

making, reinforcing the self-reflective mechanisms in SR-RAG.

2.2. Retrieval-Augmented Generation and Memory Bank for Pharmacological Recommendations

The combination of retrieval and generative models in the Retrieval-Augmented Generation (RAG) framework 

has demonstrated significant potential, particularly in healthcare tasks. The MMED-RAG framework [15] highlights 

how multi-modal retrieval can enhance factual accuracy and context-awareness by integrating domain-specific 

retrieval mechanisms. This allows the model to retrieve relevant medical knowledge, improving reasoning 

capabilities and making it effective for tasks like medical question answering (VQA) and report generation. 

Similarly, in our pharmacological recommendation framework, retrieval plays a critical role in ensuring that the 

system utilizes the most up-to-date pharmacological data and clinical knowledge to provide reliable 

recommendations. This modular retrieval system interacts with a generative model to personalize drug 
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recommendations based on patient-specific data, improving the quality and safety of the recommendations.

Recent advancements in Retrieval-Augmented Generation (RAG) models have focused on fine-tuning and 

RAG techniques to improve the factual accuracy of medical models [3,5,16,17]. While fine-tuning is a commonly 

used method to enhance model performance, it faces challenges in the medical domain due to the scarcity of 

high-quality labeled data and the distribution gap between training datasets and real-world data [18]. In contrast, 

RAG methods help address these limitations by incorporating external references during the inference phase, 

thereby improving the factuality of Medical Large Vision-Language Models (Med-LVLMs) [9, 11]. These 

external references are particularly beneficial in domains like pharmacology, where the medical knowledge base 

is vast and continually evolving [11, 14]. However, current RAG implementations still face significant 

limitations, such as dataset-specific biases and misalignment issues, which can reduce generalizability and lead 

to factuality problems when applied across different medical domains [19–23].

Moreover, incorporating a Memory Bank for continuous learning, as demonstrated in MMED-RAG, allows 

models to store and retrieve past experiences, thus enhancing long-term reasoning. Memory driven RAG 

systems have been explored to reinforce factual consistency and ensure improved retrieval alignment [4,6,7]. 

This reflective learning mechanism enables the model to adapt over time by learning from past mistakes, which 

is crucial in the context of pharmacological recommendations where drug interactions and treatment protocols 

evolve. By leveraging a memory bank, our framework can ensure that the system does not propagate past errors 

and continually refines its decision-making process.

Additionally, modular and domain-specific frameworks have been shown to improve RAG’s performance 

in healthcare. For example, [9] combined different retrieval methods and fine-tuning strategies for medical 

tasks, while [24] integrated knowledge graphs (KGs) to enhance RAG’s performance in medical question 

answering. These approaches enable the framework to focus on domain-specific knowledge, such as drug 

interactions and clinical guidelines, improving the accuracy of drug recommendations in our framework. Multi-

agent systems, like Clinfo. ai [25], have also demonstrated the power of combining specialized models for 

comprehensive healthcare solutions, a strategy we similarly adopt to integrate pharmacological and clinical 

knowledge in our recommendation system.

Furthermore, the importance of cross-modal alignment in RAG models has been emphasized in recent 

research. The RULE framework [14] addresses over-reliance on retrieved contexts through preference fine-

tuning, while other studies [20, 26, 27] investigate alignment issues within medical retrieval tasks. Our 

framework builds upon these insights by enhancing both retrieval alignment and long-term factual consistency 

through self-reflective learning and memory augmentation.

3. Methodology

3.1. Framework Overview

The workflow of our proposed framework is illustrated in Figure 1. The system integrates a Self-Reflective 

Mechanism, RAG-Enhanced Retrieval, and a Pharmacological Memory Bank to generate accurate and 

personalized pharmacological recommendations. The key steps are as follows:

● Step 1: The patient information is input into the system and first processed by the Self-Reflective 

Mechanism, which analyzes the patient’s medical background and identifies the relevant context for 

recommendation generation.

● Step 2: The Self-Reflective Mechanism queries the RAG-Enhanced Retrieval module to obtain relevant 

knowledge from external sources.

● Step 3: The RAG-Enhanced Retrieval interacts with the External Knowledge Base to fetch domain-specific 

pharmacological information, such as drug interactions, guidelines, and treatment protocols.

● Step 4: The retrieved knowledge is sent back to the RAG-Enhanced Retrieval module for processing.

● Step 5: The retrieved knowledge is then passed to the Self-Reflective Mechanism, which validates and 

integrates this information into the patient-specific recommendation pipeline. This step ensures that retrieved 

data is correctly aligned with the patient’s context before final decision-making.
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● Step 6: The Self-Reflective Mechanism interacts with the Pharmacological Memory Bank to store and 

retrieve historical recommendations. This step allows the model to avoid redundant suggestions and improve 

long-term decision-making.

● Step 7: The Pharmacological Memory Bank provides additional insights by retrieving past validated 

recommendations and their outcomes, further refining the current decision.

● Step 8: Finally, the refined recommendation is generated, combining patient-specific data, external medical 

knowledge, and insights from the memory bank to produce the most reliable and personalized prescription.

Solid arrows in Figure 1 represent the primary data flow. Dashed arrows indicate auxiliary feedback 

mechanisms, such as the iterative refinement using retrieved knowledge (Step 5) and long-term learning via the 

Pharmacological Memory Bank (Step 6, Step 7). This dual-process ensures that recommendations improve over 

time, leveraging both real-time knowledge and historical insights.

3.2. Self-Reflective Mechanism for Pharmacological Recommendations

To ensure the reliability and safety of pharmacological recommendations, we propose a self-reflective 

mechanism inspired by the human cognitive process of reflection and correction. This module evaluates the 

generated recommendations for potential errors, such as dosage conflicts or prohibited drug interactions, and 

provides corrections based on predefined rules and external knowledge sources.

The self-reflective mechanism operates in three phases: detection, correction, and optimization. It 

dynamically evaluates the generated recommendations and iterativelyrefines them to achieve higher accuracy 

and reliability.

Detection Phase: In the detection phase, the system performs multidimensional validation of the generated 

pharmacological recommendations. This includes:

Validation(x)={r1 r2 rn }

where x represents the generated recommendation, and ri corresponds to validation rules such as dosage limits, 

known drug interaction risks, and adverse effects. These rules are retrieved from an external knowledge base K 

containing structured pharmacological information:

K ={(d1 d2 rp)}

where d1 and d2 are interacting drugs,r is the interaction risk, and p is the probability or severity of the risk.

If a recommendation violates any ruleri , it is flagged for correction, and the system records the error type E

(x), such as dosage conflict or interaction risk, for further analysis.

Figure 1.　Overview of the Self-Reflective Retrieval-Augmented Framework.
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Correction Phase: The correction phase involves refining the initial recommendation by incorporating 

feedback and external knowledge. A secondary module, guided by the error feedback E(x) and external 

knowledge K, refines the recommendation x as follows:

x'= Refine(xE(x)K),

where the function Refine combines deterministic rules and adjustments via a neural model to correct the 

identified errors. Specifically, the model generates a new recommendation y by maximizing the probability of a 

corrected recommendation, conditioned on the original input x, error feedback E(x), and the external 

knowledge K:

x'= argmaxy P(y|xE(x)K)

where P(y|x, E(x), K) represents the probability of generating a corrected recommendation y given the input 

context, error feedback, and external knowledge.

To further enhance the correction process, reinforcement learning (RL) is employed to optimize the 

generation of recommendations. In this setup, the model receives a reward R that reflects the quality of the 

recommendation, which is based on multiple factors such as accuracy, safety, and error rate. The reward 

function is defined as:

R = α ×Accuracy + β × Safety - γ ×ErrorRate

where α, β, γ are hyperparameters that weight the importance of each evaluation metric. By maximizing this 

reward function, the model learns to generate recommendations that are both accurate and safe, while 

minimizing the occurrence of errors. This reinforcement learning approach helps to continually refine the 

recommendation process, ensuring that the system produces optimal and contextually appropriate 

recommendations over time.

Thus, the combination of error feedback, external knowledge, and reinforcement learning allows the model 

to iteratively improve the quality of its recommendations, addressing errors while ensuring that the final 

recommendation is aligned with the desired objectives of accuracy, safety, and reliability.

Optimization Phase: The optimization phase stores the correction process, including the original error and 

its resolution, in a pharmacological memory bank M for future reference:

M =MÈ{(xE(x)x' )}

This allows the system to dynamically learn from past mistakes and improve its performance in similar 

scenarios. During subsequent recommendations, the memory bank can be queried to preemptively avoid errors:

x'=Generate(xMK)

The overall process of the self-reflective mechanism is summarized in Algorithm 1.

This self-reflective mechanism enables dynamic detection and correction of errors, significantly improving 

the reliability and adaptability of pharmacological recommendations.

3.3. Pharmacological Memory Bank for Long-Term Reasoning

To enhance the adaptability and reliability of pharmacological recommendations, we propose the 

construction of a pharmacological memory bank. This memory bank stores historically validated drug 
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recommendations, interaction risks, and adverse reaction cases to support long-term reasoning and knowledge 

extension during the generation process. The memory bank is designed to address the limitations of short-term 

inference in generative models and enables continuous learning through dynamic updates.

The pharmacological memory bank consists of two primary components: static knowledge and dynamic 

updates. Static knowledge includes known drug interactions, dosage recommendations, and contraindication 

cases extracted from reliable databases. Dynamic updates involve integrating reflective feedback and corrections 

generated during recommendation tasks into the memory bank, ensuring continuous refinement of knowledge.

Data Source: The data incorporated into the memory bank is extracted from the following sources:

● Public pharmacological databases: Data from resources such as DrugBank and FDA adverse event 

reporting systems, containing drug names, interaction risks, and adverse reaction types.

● Real-world clinical cases: Verified drug recommendations and interaction reports from clinical practice.

All data is processed into structured formats, including tuples such as:

K ={(d1 d2 rp)}

where d1 and d2 are interacting drugs, r represents the risk type (e.g., contraindication or adverse effect), and p 

denotes the severity or probability of the interaction.

Memory Bank Structure: The memory bank is structured into two components:

● Static Knowledge: Contains pre-verified information, such as drug interaction risks, dosage guidelines, 

and contraindications, providing a foundational knowledge base.

● Dynamic Updates: Reflective feedback from the self-reflective mechanism is dynamically incorporated. 

For example, if an unreasonable recommendation is corrected during the generation process, the corrected 

recommendation and the error type are stored in the memory bank as:

Mdynamic =Mdynamic È{(xE(x)x' )}

where x is the original recommendation, E(x) is the error feedback, and x′ is the corrected recommendation.

Retrieval and Integration Mechanism: During the generation process, the memory bank is queried to 

retrieve relevant knowledge based on the current task context. The retrieval process is formalized as:

Retrieve(qKÈMdynamic )

where q represents the query derived from the current recommendation task. The retrieved knowledge is then 

integrated into the model’s reasoning process to guide the generation of recommendations. Specifically:

x'=Generate ( xRetrieve (qKÈMdynamic ) ) 
where x is the initial input, and x′ is the final output informed by the memory bank.

The workflow for incorporating the pharmacological memory bank is summarized in Algorithm 2.

The pharmacological memory bank combines static and dynamically updated knowledge to enhance the 

reliability and adaptability of pharmacological recommendations. By leveraging historically validated 

knowledge, the model ensures accurate and context-aware recommendations. The dynamic update mechanism 

enables continuous learning from reflective feedback, helping the model avoid repeating past mistakes. 

Additionally, the memory bank facilitates adaptation to complex or rare cases by integrating domain-specific 

corrections into future recommendations. This iterative process allows the model to evolve over time, providing 

increasingly robust and reliable recommendations across diverse scenarios.
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3.4. RAG-Enhanced Retrieval for Knowledge-Augmented Generation

To address the limitations of pre-trained models relying on outdated knowledge, we integrate a Retrieval-

Augmented Generation (RAG) framework intopharmacological recommendation tasks. By dynamically 

retrieving up-to-date external knowledge, such as newly released drugs and the latest clinical research, the RAG-

enhanced approach ensures timely and accurate recommendations.

The integration of RAG bridges the gap between static internal memory and external knowledge, allowing 

the system to balance stability and adaptability during the recommendation process.

Knowledge Retrieval Module: The retrieval module identifies task-relevant information from external 

knowledge bases, such as drug databases or scientific literature. For each query derived from the 

recommendation context, the system retrieves a set of the most relevant knowledge entries based on semantic 

similarity. These entries are then ranked and filtered to ensure that only the most useful information is passed to 

the generation module.

Knowledge-Augmented Generation: The generation module dynamically combines retrieved external 

knowledge with the internal memory. An attention-based mechanism is employed to balance the contributions of 

the memory bank and the retrieved knowledge. This ensures that the generated output not only benefits from 

long-term, validated knowledge but also adapts to the latest medical advancements.

The generation process can be summarized as:

x'=Generate (qMKretrieved ) 
where q represents the current query, M denotes the internal memory, and Kretrieved is the external knowledge 

retrieved for the task.

Continuous Optimization: After generating a recommendation, the self-reflective mechanism evaluates the 

output for potential inaccuracies. If issues such as outdated or irrelevant information are detected, the system 

adjusts its retrieval strategy or updates the relative weighting of internal and external knowledge. Over time, this 

iterative feedback process ensures that the model adapts to changing medical contexts and maintains high-

quality recommendations.

By integrating dynamically retrieved knowledge, the RAG-enhanced framework significantly improves the 

timeliness and accuracy of pharmacological recommendations. It addresses the challenges posed by rapidly 

evolving pharmacological knowledge, ensuring that recommendations remain relevant and contextually 

accurate. Furthermore, the continuous optimization process allows the system to refine its approach iteratively, 

balancing stability from internal memory with adaptability from external knowledge sources.

4. Experiment

4.1. Dataset and Experimental Setup

To validate the effectiveness of our proposed framework, we conduct experiments using both publicly 

available datasets and custom-built datasets related to pharmacological recommendations.

Dataset Description The primary dataset includes data from DrugBank and FDA adverse event reporting 

systems. It contains diverse pharmacological information such as drug names, dosages, adverse reactions, and 

drug interaction cases. To enhance usability, the data is preprocessed by removing redundancy, standardizing 

formats, and filling missing values.

The dataset provides detailed insights into several aspects of drug usage and interactions:

Drug Categories: Drugs are grouped into major therapeutic classes such as antibiotics, antihypertensives, 

and analgesics, with each category contributing to specific adverse reaction patterns.

Dosage Ranges: Includes dosage information for both common and rare medications, with a focus on 

identifying overdosing risks.

Adverse Reactions: Contains detailed reports of mild, moderate, and severe adverse reactions, categorized 

into physiological systems (e.g., gastrointestinal, cardiovascular, or neurological effects).

Drug Interactions: Documents known drug-drug interactions, including high-risk combinations and 

contraindications. Interaction severity levels are classified as low, moderate, or high.
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Figure 2 provides a comprehensive visualization of the dataset distribution, including the proportions of 

drug categories, the frequency of adverse reactions, and the severity of drug interactions.

Experimental Environment The experiments are conducted on a system with an NVIDIA Tesla V100 GPU 

(32 GB), 256 GB RAM, and an Intel Xeon processor. The implementation uses Python 3.9, PyTorch 1.10, and 

the Hugging Face Transformers library.

Evaluation Metrics We evaluate the framework performance using the following metrics: Accuracy (Acc) 

measures the proportion of correct recommendations. F1 Score evaluates the balance between precision and 

recall. Top-k Hit Rate assesses the likelihood of the correct recommendation appearing within the top-k results. 

For drug interaction detection, we report precision and recall (Prec/Rec) to capture the detection quality.

4.2. Ablation Study

To demonstrate the effectiveness of each module in our framework, we conduct a comprehensive ablation 

study. Each module (Self-Reflective Mechanism, Pharmacological Memory Bank, RAG-enhanced Retrieval) is 

evaluated independently and in combination. Table 1 shows the results.

We evaluate the performance with and without the self-reflective mechanism. Without this module, the 

system generates unfiltered recommendations, resulting in higher error rates. Introducing the mechanism 

significantly improves the recommendation quality by detecting and correcting errors dynamically.

To validate the memory bank’s impact, we conduct experiments with and without it. Without the memory 

bank, the model struggles with long-term reasoning tasks and often fails in scenarios requiring knowledge of 

rare or complex drug interactions. With the memory bank, the performance on these tasks improves substantially.

We test the model’s ability to incorporate external knowledge dynamically through the RAG module. 

Without dynamic retrieval, the model fails to adapt to scenarios involving new drugs or updated clinical 

research. The RAG-enhanced version demonstrates a higher hit rate and accuracy in these cases.

Table 1.　Ablation Study Results.

Configuration

Full Model

w/o Self-Reflective Mechanism

w/oPharmacological Memory Bank

w/o RAG-enhanced Retrieval

Accuracy (%)

92.3

85.6

87.2

88.4

F1 Score

0.89

0.82

0.84

0.85

Top-5 Hit 
Rate (%)

94.7

88.1

89.5

90.8

Drug Interaction 
Prec/Rec

0.91/0.88

0.85/0.81

0.86/0.83

0.87/0.84

4.3. Comparison with State-of-the-Art Methods

In this section, we compare our proposed RAG framework with a range of state-of-the-art methods, 

Figure 2.　Comprehensive distribution of drug categories, adverse reactions, and drug interactions in the dataset.
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including traditional recommendation systems (rule-based systems and collaborative filtering), deep learning-

based approaches (such as transformer models), and existing Retrieval-Augmented Generation (RAG) methods 

in the medical and pharmaceutical domains. Table 2 summarizes the quantitative results, demonstrating that our 

framework outperforms the traditional methods and the most recent RAG-based approaches in several key 

evaluation metrics.

We benchmark our system against the following categories:

● Traditional Methods: Rule-based systems and collaborative filtering models, which are widely used in 

recommendation systems but often lack the ability to incorporate external knowledge dynamically.

● Deep Learning-based Models: Transformer-based recommendation systems that utilize neural networks 

for learning complex patterns but may still struggle with domain-specific external knowledge integration.

● Medical and Pharmaceutical RAG Methods: Recent RAG frameworks applied in healthcare and drug 

recommendation tasks, such as those outlined in Section 2.2, which focus on integrating retrieval with 

generative models.

By comparing across these diverse approaches, we show that our RAG framework not only outperforms 

traditional methods but also provides superior performance over recent RAG-based medical recommendation 

systems. This demonstrates the effectiveness of incorporating a robust retrieval mechanism, error feedback, and 

continuous learning in enhancing the accuracy and reliability of pharmacological recommendations.

In conclusion, the results in Table 2 show that our proposed framework not only provides superior 

performance compared to traditional recommendation methods but also outperforms existing RAG-based 

solutions in the medical and pharmaceutical fields, reinforcing the effectiveness of our approach in generating 

reliable and accurate drug recommendations.

4.4. Case Study

In this case study, we demonstrate how the proposed Self-Reflective Retrieval-Augmented Framework 

improves pharmacological recommendations (see Figure 3). The example involves a 65-year-old patient with 

hypertension currently prescribed Amlodipine (DrugA), a calcium channel blocker.

Input Data

● Patient Information:

- Age: 65

- Condition: Hypertension (High Blood Pressure)

- Current Medication: Amlodipine (DrugA)–calcium channel blocker

Initial Recommendation:

● Recommended Medication: Amlodipine (DrugA) + Lisinopril (Drug B)–ACE inhibitor

● Reason: Based on clinical guidelines, the combination of Amlodipine (acalcium channel blocker) and 

Lisinopril (an ACE inhibitor) is commonly used to manage hypertension in elderly patients.

Table 2.　Comparison with State-of-the-Art Methods.

Method

Rule-based System

Collaborative Filtering

Deep Learning Model (Transformer)

MMED-RAG [15]

Proposed Framework

Accuracy (%)

78.5

83.4

88.1

90.2

92.3

F1 Score

0.75

0.79

0.85

0.87

0.89

Top-5 Hit 
Rate (%)

81.2

85.7

91.4

93.1

94.7

Drug Interaction 
Prec/Rec

0.78/0.72

0.81/0.77

0.87/0.83

0.89/0.85

0.91/0.88
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Error Detected (During Self-Reflective Mechanism)

● Detected Issue: The combination of Amlodipine and Lisinopril increases the risk of hyperkalemia 

(elevated potassium levels) in elderly patients, which could lead to heart arrhythmias or kidney problems.

● Problem: This drug combination could potentially cause dangerous side effects, especially in elderly 

patients with pre-existing kidney conditions.

Correction by Self-Reflective Mechanism:

● The system detects this risk and recommends substituting Lisinopril with Losartan (a different class of 

ACE inhibitor that poses a lower risk of hyperkalemia).

External Knowledge Retrieval (RAG-Enhanced Retrieval)

● New Knowledge: Recent clinical studies and guidelines suggest that Losartan is equally effective in 

managing hypertension and poses a lower risk of hyperkalemia compared to Lisinopril, especially for elderly 

patients.

Output Recommendation

● Recommended Medication: Amlodipine (DrugA) + Losartan (Drug C)

● Reason: After correcting the initial recommendation, Losartan is chosen to avoid the risk of hyperkalemia 

while maintaining effective blood pressure control. The combination with Amlodipine is safe and effective for 

elderly patients.

This case study highlights the effectiveness of our framework in dynamically correcting drug combinations 

to improve safety and efficacy.

5. Conclusions and Future Work

In this paper, we proposed a novel Self-Reflective Retrieval-Augmented Framework for reliable 

pharmacological recommendations. By integrating a self-reflective mechanism for error detection and 

correction, a pharmacological memory bank for long-term reasoning and knowledge accumulation, and a RAG-

enhanced retrieval module for incorporating up-to-date external knowledge, the framework addresses critical 

challenges in pharmacological recommendation systems. The proposed framework demonstrated superior 

performance compared to state-of-the-art methods, achieving a 92.3% accuracy and consistently outperforming 

baselines across multiple evaluation metrics. These results validate the efficacy of the framework in improving 

recommendation accuracy, safety, and adaptability.

However, there are still limitations in our approach. First, the reliance on external knowledge bases, while 

beneficial for adaptability, may introduce latency issues when retrieving large-scale data. Second, the 

pharmacological memory bank, though effective for long-term reasoning, may require optimization to handle 

the scalability of rapidly growing datasets. Third, the framework has not yet been extensively validated in real-

world clinical environments, which may present unforeseen challenges.

Future work will focus on addressing these limitations. We plan to optimize the retrieval module for faster 

and more efficient integration of external knowledge while maintaining accuracy. Additionally, we aim to 

enhance the scalability of the pharmacological memory bank by employing advanced indexing and compression 

techniques. Finally, we will collaborate with healthcare professionals to test the framework in real-world clinical 

Figure 3.　Improving Pharmacological Recommendation for Hypertension.
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settings, incorporating feedback to further refine its performance and usability. This future research will 

contribute to advancing safe and reliable pharmacological decision-making in healthcare.
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