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Abstract: Pension fund portfolio optimization is a critical task that involves managing risk and maximizing 

returns while adhering to operational constraints. To address the challenges of complexity and management 

costs, this paper proposes a novel sparse portfolio optimization framework. The key innovation lies in 

introducing an m-sparse constraint, which limits the number of active assets, significantly reducing management 

costs while maintaining performance. The framework combines multiple practical constraints, such as self- fi

nancing and long-only conditions, ensuring the feasibility and stability of the portfolio. To solve the non-convex 

optimization problem, we adapt the Proximal Gradient Algorithm (PGA), which guarantees global optimality 

with high computational efficiency. Experimental results show that the proposed method outperforms state-of-

the-art algorithms in terms of Sharpe ratio and cumulative return, while also minimizing transaction costs. Our 

method provides a highly scalable and ef fi cient solution for large-scale pension fund portfolio optimization, 

offering significant advantages in both performance and practicality.

Keywords: pension fund portfolio optimization; m-sparse constraints; Proximal Gradient Algorithm (PGA); 

sharpe ratio maximization; transaction costs minimization

1. Introduction

Portfolio optimization is a central problem in financial management, aiming to allocate assets in a way that 

maximizes return while minimizing risk. In the context of pension funds, this task becomes even more complex 

due to additional constraints such as operational costs, regulatory limitations, and the need for long-term 

stability. Traditional portfolio optimization methods often struggle to balance the performance of the portfolio 

with practical considerations such as management costs and the number of active assets.

The increasing complexity of fi nancial markets and the growing demand for ef fi cient asset allocation 

strategies in large-scale institutional portfolios highlight the need for more sophisticated optimization 

frameworks. Conventional optimization models, such as the mean-variance optimization model, do not fully 

address the unique challenges faced by pension funds, such as minimizing turnover and reducing transaction 

costs, which are critical to ensuring the long-term success of the fund.

Recent advancements have introduced various methods to handle the sparsity of asset allocations, such as 
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sparse portfolio optimization models that reduce the number of active assets in a portfolio. However, most of 

these methods do not incorporate realistic financial constraints, such as self-financing and long-only conditions, 

which are essential for pension funds. Moreover, existing algorithms often fail to ef fi ciently solve the non-

convex optimization problems that arise when combining sparse constraints with risk measures like the 

Sharpe ratio.

To address these challenges, we propose a novel portfolio optimization framework that introduces an m-

sparse constraint into the portfolio selection process for the fi rst time. This constraint reduces the number of 

active assets in the portfolio, which helps control management costs while maintaining strong performance. The 

proposed framework combines this constraint with additional practical constraints, such as self- fi nancing and 

long-only conditions, to ensure that the optimized portfolio remains feasible and aligned with real-world 

operational requirements. Furthermore, we adapt the Proximal Gradient Algorithm (PGA) to efficiently solve the 

resulting non-convex optimization problem, guaranteeing global optimality with high computational efficiency.

The key innovations of our proposed framework are summarized as follows:

(1) Maximization of Sharpe Ratio under m-Sparse Constraints: We introduce the m-sparse constraint into 

pension fund portfolio optimization for the first time, precisely controlling the number of active assets to signifi

cantly reduce management costs. This constraint enhances the operability of the portfolio and aligns it with the 

practical operational needs of pension funds.

(2) Comprehensive Optimization Framework with Multiple Constraints: We propose a comprehensive 

optimization framework that combines self- fi nancing and long-only constraints, ensuring the feasibility and 

robustness of the portfolio in practical operations. This framework effectively avoids frequent trading and 

unnecessary risk exposure.

(3) Efficient Algorithm for Globally Optimal Sparse Portfolios: We successfully adapt the Proximal Gradient 

Algorithm (PGA) to directly solve the non-convex m-sparse fractional optimization problem. The algorithm 

guarantees global optimality with high computational efficiency and convergence speed, making it practical for 

large-scale pension fund portfolio optimization.

2. Related Work

2.1. Pension Fund Portfolio Management

Pension funds face unique investment challenges due to their long-term liabilities and exposure to 

demographic risks, particularly longevity risk. Traditional models often fail to capture the dual nature of pension 

fund management, which must address both idiosyncratic (individual) and systematic (population-wide) 

longevity risks. To address this, Armstrong et al. (2022) [1] introduced an Insured Drawdown Scheme—a 

collective fund model with a tontine-like structure that allows for risk pooling among members, thereby 

mitigating idiosyncratic longevity risk. However, such schemes are less effective against systematic longevity 

risk, which is undiversifiable.

Building upon this foundation, recent work has explored markets for mortality-linked insurance contracts 

between pension funds. When funds have heterogeneous risk preferences, they can bene fi t from trading 

mortality risk exposure, as shown in Armstrong et al. (2022) [1]. This mutual insurance mechanism enables a 

form of decentralized risk-sharing, which is distinct from traditional centrally-planned approaches that require 

compulsory membership (Bovenberg et al., 2007; Gollier, 2008) [2,3].

In parallel, stochastic control models have been employed to derive optimal strategies for consumption, 

investment, and insurance in such pension fund contexts. These models often adopt Epstein – Zin utility to 

separate intertemporal substitution from risk aversion, enhancing realism and tractability (Bansal and Yaron 

(2004); Campbell and Viceira (1999)) [4,5]. Optimal solutions are typically derived through Hamilton-Jacobi-

Bellman (HJB) equations, which become particularly complex when incorporating insurance purchase decisions 

and longevity risk modeling.

While many of these works focus on the decumulation phase of retirement, they underscore the broader 

need for robust and scalable optimization strategies that can account for multiple layers of constraints. Our work 
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extends this line of research by introducing a sparse optimization framework tailored for pension fund 

investment, emphasizing computational ef fi ciency, regulatory feasibility, and operational practicality in the 

presence of real-world trading frictions.

2.2. Sharpe Ratio Optimization and Sparse Portfolio Models

The Sharpe ratio (SR) (Sharpe, 1966) [6] is a key performance metric in finance, defined as the ratio of expected 

return to the risk (standard deviation) of a portfolio. Maximizing SR has been a central topic in portfolio optimization. 

Early models based on mean-variance optimization (Ban et al., 2018; Brodie et al., 2009) [7,8] or exponential growth 

rate criteria Lai et al. (2018, 2020) have aimed to balance risk and return, thus improving the SR. More advanced 

methods directly focus on SR optimization [9,10]. For instance, Hung et al. (2000) and Yu & Xu (2000) propose 

maximizing SR using the augmented Lagrangian method [11,12], while Pang (1980) reformulate the SR maximization 

as a linear complementarity problem, solvable via the Parametric Linear Complementarity Technique (PLCT) [13].

To address the issue of portfolio complexity, sparsity models have gained attention. Brodie et al. (2009) introduce 

the Sparse and Stable Markowitz Portfolio (SSMP) by applying ℓ1-regularization to the mean-variance model [8]. 

Similarly, Ao et al. (2019) and Lai et al. (2018) extend these models with ℓ1 and ℓ0 regularization to enhance SR 

optimization [9,14]. Luo et al. (2022) further develop the SSPO-ℓ0 model, applying a ℓ0-regularization approach under 

self-financing and long-only constraints, offering closed-form solutions [15]. Lai et al. (2020) propose a machine 

learning approach to construct portfolios based on sparse covariance structures, demonstrating the flexibility of sparse 

models in adapting to financial data [10].

Despite these advances, direct SR optimization methods remain a challenging area of research. Pang (1980) 

optimize SR under linear constraints, but this method becomes infeasible when aiming for sparse solutions [13]. 

To this end, Hung et al. (2000) and Yu & Xu (2000) [11,12] explore SR optimization using the IPSRM-D model, 

which modifies the SR by incorporating second-order moments and a diversification term. However, this modifi

cation introduces differences from the original SR de fi nition, potentially affecting the model’s performance 

compared to traditional methods.

To solve SR optimization under realistic constraints, gradient-based methods have been employed, but they 

often fail to guarantee global or local optimality. For example, the augmented Lagrangian method proposed by 

Hung et al. (2000) [11] may not always lead to optimal solutions due to its nonconvex nature and the issues 

associated with the update schemes Cottle (1972) [16]. Therefore, while these methods offer practical tools for 

SR optimization, further research is required to improve their ef fi ciency and reliability, especially in sparse 

portfolio contexts.

3. Methodology

As shown in Figure 1, our proposed framework consists of four main stages. The process begins with 

inputting historical asset data and relevant parameters, followed by the definition of the optimization objective 

and constraints. Next, an optimization framework enforces practical financial rules such as self-financing and 

long-only constraints. The Proximal Gradient Algorithm (PGA) then iteratively solves the non-convex 

optimization problem, alternating between gradient descent and proximal operations. The final output includes 

the optimized portfolio weights along with evaluation metrics such as the Sharpe ratio and cumulative wealth.

In the remainder of this section, we present the detailed methodology behind the proposed portfolio 

optimization approach. The section is divided into three key parts. Section 3.1 describes the formulation of the 

Sharpe ratio maximization problem under the m-sparse constraint, which limits the number of active assets in 

the portfolio. The purpose of this constraint is to reduce management costs while maintaining portfolio 

performance. In Section 3.2, we introduce a comprehensive optimization framework that combines multiple 

constraints, including self- fi nancing and long-only, to ensure the practical feasibility and robustness of the 

portfolio in real-world operations. Finally, we present an ef fi cient algorithm in Section 3.3, based on the 

Proximal Gradient Algorithm (PGA), to solve the non-convex optimization problem. The algorithm 

guarantees global optimality and computational ef fi ciency, making it practical for large-scale pension fund 

portfolio optimization.
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These three sections lay the foundation for our proposed method, which efficiently handles the complexities 

of portfolio optimization while meeting the operational requirements of pension funds.

3.1. Maximization of Sharpe Ratio under m-Sparse Constraints

The Sharpe ratio (SR) is a widely recognized performance metric that measures the risk-adjusted return of a 

portfolio. Our goal is to maximize the SR under the m-sparse constraint, which limits the number of active 

assets in the portfolio. This constraint is introduced to reduce management costs, which is crucial for pension 

funds, where minimizing complexity and operational costs is a key consideration, while still maintaining the 

portfolio’s performance. The model we propose integrates the m-sparse constraint into the SR maximization 

problem and provides a framework for constructing globally optimal portfolios.

We de fi ne the portfolio weight vector w ∈ ℝN for N assets, where w represents the proportion of the total 

wealth allocated to asset i. The objective function is to maximize the Sharpe ratio, which is the ratio of expected 

return to risk. To account for additional risks, we modify the original Sharpe ratio by incorporating a robust risk 

measure, such as Value-at-Risk (VaR), as follows:

S(w)=
w⊤ μ

VaRβ (w)+ λ w
2

2



where µ ∈ ℝN is the vector of expected returns, Σ ∈ ℝN×N is the covariance matrix of asset returns, VaRβ(w) 

denotes the Value-at-Risk of the portfolio at con fi dence level β, and λ controls the portfolio’s regularization 

penalty for reducing volatility.

To enforce the sparsity of the portfolio, we add the constraint that the number of nonzero elements in w is 

bounded by m, i.e.,  w  ≤ m, where  w 0 denotes the ℓ0-norm, counting the number of nonzero entries in w. This 

constraint ensures that the portfolio consists of at most m active assets, reducing operational complexity and 

management costs.

The optimization problem is formulated as:

max
wÎ RN

w⊤ μ

VaRβ (w)+ λ w
2

2

subject to w
0
£m.

This is a non-convex fractional optimization problem due to the combination of the ℓ0-norm and the 

fractional structure of the Sharpe ratio. The non-convexity arises from both the sparsity constraint and the non-

Figure 1.　Overview of the proposed sparse portfolio optimization framework. The process starts from historical 
input data and portfolio parameters, formulates an m-sparse Sharpe ratio maximization objective under realistic 
constraints, and solves it via a Proximal Gradient Algorithm (PGA). The final output includes optimal portfolio 
weights and evaluation metrics.

--4



Alan W, et al. J. Comput. Methods Eng. Appl. 2023, 3(1)

linear risk measure. To solve this problem effi ciently, we reformulate the objective into a surrogate quadratic 

form and apply optimization techniques suitable for large-scale problems.

The m-sparse constraint effectively controls the number of assets selected in the portfolio, which reduces the 

complexity and management costs associated with the portfolio. Additionally, the sparsity ensures that the 

portfolio is practical and manageable by focusing on a smaller subset of assets. We next present an ef fi cient 

algorithm to solve this constrained optimization problem.

3.2. Comprehensive Optimization Framework with Multiple Constraints

Building on the formulation in Section 3.1, we introduce a comprehensive optimization framework that 

incorporates multiple constraints to ensure both the feasibility and robustness of the portfolio. In addition to the 

m-sparse constraint, we integrate self-financing and long-only constraints into the optimization process. These 

constraints are crucial for maintaining the operational integrity of pension funds, where external financing is not 

allowed, and short-selling is prohibited.

The self-financing constraint ensures that the portfolio evolves without the need for external borrowing or 

additional capital injection. This constraint guarantees that any change in the portfolio’s value is entirely due to 

asset price changes, without external cash fl ows. On the other hand, the long-only constraint restricts the 

portfolio to holding only non-negative weights, effectively prohibiting short-selling. Together, these constraints 

help to ensure that the portfolio remains stable and does not incur unnecessary risks.

Integrating these constraints into the optimization framework is crucial for ensuring the portfolio respects 

the real-world operational environment of pension funds. By ensuring that the portfolio remains self-financing 

and long-only, we can guarantee that the investment strategy respects the practical constraints commonly 

imposed in the management of pension funds. This enhances stability and reduces unnecessary risk exposure, 

making the optimized portfolio not only theoretically sound but also practically viable.

To solve the optimization problem under these practical constraints, we employ a proximal gradient 

algorithm as described in Algorithm 1. At each iteration, the method performs a gradient descent step over the 

objective function and then projects the intermediate solution back onto the feasible set Ω , which enforces the 

self- fi nancing, long-only, and m-sparsity constraints. Convergence is determined by the ℓ2-norm difference 

between consecutive iterates.

The incorporation of these constraints enhances the robustness of the portfolio, as it prevents the portfolio 

from taking excessive risks, such as through leveraging or short-selling. This feature is particularly important for 

pension funds, where preserving capital and minimizing risk are paramount. By preventing such risks, these 

constraints help to ensure that the portfolio is both feasible and aligned with the long-term objectives of pension 

funds, which prioritize stability and low-risk investment strategies.

To further improve the practical feasibility of the portfolio, we incorporate measures to minimize transaction 

costs and prevent frequent trading. This approach avoids unnecessary turnover, which can lead to higher 
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transaction costs and increased risk exposure. By focusing on a sparse set of assets and avoiding excessive 

trading, the portfolio remains operationally efficient, reducing management costs while maintaining competitive 

risk-adjusted returns.

In summary, the proposed comprehensive optimization framework not only incorporates practical 

constraints such as self-financing and long-only but also ensures the feasibility and robustness of the portfolio. It 

effectively mitigates the risks of frequent trading and unnecessary exposure to market volatility, which is crucial 

for pension fund management.

3.3. Efficient Algorithm for Globally Optimal Sparse Portfolios

Given the non-convex optimization problem formulated in the previous section, we design an algorithm to 

directly solve the Sharpe ratio maximization under m-sparse constraints. The key challenge lies in handling both 

the fractional structure of the objective and the combinatorial sparsity constraint. The algorithm we propose is 

based on the Proximal Gradient Algorithm (PGA), which is well-suited for non-convex optimization problems 

with sparse constraints.

The core idea behind PGA is to decompose the optimization process into two steps: one for the smooth 

component of the objective function (which can be solved by gradient descent), and another for the non-smooth 

component (which is addressed via a proximal operator). Speci fi cally, the objective function involves 

maximizing the Sharpe ratio, which is the ratio of expected return to portfolio risk, combined with an m-sparse 

constraint that limits the number of active assets in the portfolio.

To solve this, the PGA algorithm alternates between two key operations:

­ Gradient Descent Step: The smooth part of the objective function is maximized using the gradient of the 

Sharpe ratio. The portfolio weights are updated by taking a step along the negative gradient:

wk + 1 =wk - αÑw S(wk )

where α is the step size and Ñw S(wk ) is the gradient of the Sharpe ratio with respect to wk.

­ Proximal Step: The non-smooth m-sparse constraint is handled using a proximal operator that enforces 

sparsity by selecting only the top m largest components in the portfolio weight vector. This step ensures that 

only m assets are active in the portfolio at each iteration:

wk + 1 = proxγ (wk + 1 )

where proxγ is the proximal operator, which retains only the largest m elements of wk + 1 and sets the others to zero.

PGA iteratively updates portfolio weights, alternating between gradient descent and the proximal step to 

enforce sparsity. This process ensures the convergence of the portfolio to the globally optimal solution while 

maintaining computational ef fi ciency, especially for large-scale pension fund portfolios. The convergence 

criterion is:

 wk + 1 -wk < ϵ

where ϵ is a small predefined tolerance.

By combining these two operations, the PGA efficiently handles both the smooth Sharpe ratio maximization 

and the non-smooth m-sparse constraint, ultimately converging to the globally optimal solution for the sparse 

portfolio optimization problem.

Convergence Analysis: The PGA provides a guarantee of global optimality under certain conditions. Specifi

cally, the objective function is a semi-algebraic function that satisfies the Kurdyka-Łojasiewicz property, which 

allows the algorithm to converge to a global optimum. The convergence of PGA is ensured by the properties of 

the proximal operator, which is designed to handle the m-sparse constraint. The algorithm converges to a 

stationary point of the objective function, and under the assumption that the objective function is smooth and the 

constraint is feasible, PGA guarantees global optimality for the sparse portfolio optimization problem.

Mathematically, the convergence of the algorithm is established through the following relationship:

wk + 1 = proxγ (wk - αÑf (wk ))
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where proxγ is the proximal operator, α is the step size, and f (wk ) is the objective function. As the iterations 

progress, the difference between consecutive portfolio weights diminishes, leading to convergence. The 

convergence rate is typically linear or sublinear depending on the problem’s specific characteristics, such as 

smoothness and the degree of sparsity.

Computational Ef fi ciency: The PGA is particularly ef fi cient for large-scale portfolio optimization 

problems, such as those encountered in pension fund management. One of the key advantages of the PGA is its 

ability to handle large numbers of assets without the need for explicit matrix inversion or other computationally 

expensive operations. The algorithm operates on the portfolio weights vector and only requires operations that 

scale linearly with the number of assets. This makes the PGA suitable for real-time portfolio optimization tasks, 

where both speed and scalability are critical.

Furthermore, the sparse nature of the optimization problem means that the PGA can exploit the sparsity of 

the solution, significantly reducing the computational cost in practice. For example, when solving for a portfolio 

with a maximum of m active assets, the algorithm only needs to consider m non-zero components in each 

iteration, making it much more efficient than methods that do not incorporate sparsity.

The computational efficiency of the PGA also stems from its simplicity and the fact that it avoids complex 

updates or the need for large-scale matrix operations. This makes it highly practical for large-scale, real-world 

applications such as pension fund portfolio optimization, where portfolios may contain hundreds or even 

thousands of assets. The algorithm’s low computational cost and its ability to converge quickly to globally 

optimal solutions make it an ideal choice for optimizing pension fund portfolios in practice.

4. Experiment

4.1. Dataset Description

We construct our experimental dataset using historical daily returns of U.S. large-cap stocks from the CRSP 

database, covering the period from January 2000 to December 2020. The selected assets are representative of typical 

holdings in institutional pension fund portfolios. The dataset contains N assets over approximately T = 5000 trading 

days, allowing robust empirical evaluation under diverse market conditions.

For each rolling training window, we preprocess the data as follows:

(1) Missing values: Missing daily return values are imputed using a forward-fill followed by backward-fill 

method. That is, each missing value is replaced with the last available previous return; if no prior value exists, 

the next available future return is used instead.

(2) Outlier treatment: We apply winsorization at the 5th and 95th percentiles. For each asset, daily returns 

below the 5th percentile are capped at the 5th-percentile value, and those above the 95th percentile are capped at 

the 95th-percentile value. This prevents extreme outliers from distorting the optimization while preserving 

overall data structure.

(3) Expected return and covariance computation: For each asset i, the expected return µi is estimated as the 

arithmetic mean of its daily returns over the window:

μ i =
1
T∑t = 1

T

rti

The covariance matrix åÎ=RN ´N is computed using the sample covariance:

∑ij
=

1
T - 1∑t = 1

T ( )rti - μ i (rtj - μ j )

These two quantities serve as the core inputs to the portfolio optimization model.

The distribution of daily returns for one of the selected assets is shown in Figure 2. This histogram 

visualizes the spread of returns, highlighting the frequency and scale of different return values, which are critical 

for evaluating the performance and risk characteristics of the optimization model.
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4.2. Training Setup

We adopt a rolling-window training approach to simulate realistic investment scenarios. Specifically, we use 

a 5-year window (approximately 1260 trading days) as the training set, and roll the window forward by one 

month (21 trading days) at each step. For each window, the expected return vector µ and covariance matrix Σ are 

computed based on the preprocessed data, and used to solve the optimization problem.

The optimization is implemented in Python using the cvxpy package for convex programming. The 

Proximal Gradient Algorithm (PGA) is used to solve the non-convex sparse Sharpe ratio maximization problem. 

The configuration is as follows:

● Learning rate α = 0.01

● Convergence tolerance ϵ = 10−6

● Maximum number of iterations = 500

● Sparsity constraint m chosen from {5, 10, 15, 20} based on validation Sharpe ratio

Model performance is validated using time-based cross-validation, where each training window is followed 

by a non-overlapping test period of 6 months. We also adopt early stopping: if the validation Sharpe ratio does 

not improve for 10 consecutive iterations, the training process is terminated early. Hyperparameter tuning is 

performed using grid search over the learning rate α, regularization parameters, and sparsity level m, selecting 

the configuration that maximizes validation performance.

Figure 3 illustrates the typical loss curve observed during training. The loss consistently decreases as the 

number of optimization steps increases, demonstrating the convergence of the Proximal Gradient Algorithm 

under our configured parameters.

Figure 2.　Histogram showing the distribution of daily returns for one selected asset over the training period. 
The data is preprocessed by handling missing values and outliers as described.

Figure 3.　Training loss curve for the proposed PGA-based sparse portfolio optimization. The vertical axis 
represents the optimization loss, and the horizontal axis denotes iteration steps. The smooth convergence pattern 
confirms the effectiveness and stability of the optimization process.
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4.3. Ablation Study

To evaluate the contribution of each component of our proposed framework, we conduct an ablation study 

across three key dimensions: the sparsity constraint, the operational constraints, and the optimization algorithm. 

For each variant, we isolate or remove a specific component and assess the impact on portfolio performance, 

primarily measured by out-of-sample Sharpe ratio and cumulative return.

Effect of m-sparse constraint: To examine the impact of the m-sparse constraint, we compare our full 

model with a baseline that maximizes the Sharpe ratio without imposing any sparsity constraint (i.e., allowing 

all assets to be active). As shown in Table 1, the inclusion of the m-sparse constraint leads to a slight reduction 

in cumulative return but signi fi cantly improves model interpretability and reduces portfolio turnover. The 

constrained portfolio also better reflects realistic pension fund operations.

Effect of self-financing and long-only constraints: We next analyze the effect of incorporating both self-fi

nancing and long-only constraints. Removing these constraints results in portfolios with high leverage and frequent 

short positions, which are impractical in real-world pension fund management. The constrained version yields slightly 

lower returns but substantially lower volatility, leading to a higher Sharpe ratio and greater robustness.

Effectiveness of Proximal Gradient Algorithm: Finally, we evaluate the ef fi ciency of the Proximal 

Gradient Algorithm (PGA) compared to a naive projected gradient descent (PGD) approach. While both 

methods achieve similar objective values, PGA converges faster and consistently produces portfolios that satisfy 

the m-sparse constraint with fewer iterations.

As illustrated in Table 1, the proposed full model achieves the best balance between performance and 

practicality. The sparsity constraint enhances interpretability and manageability; the operational constraints 

ensure regulatory and logistical feasibility; and the PGA algorithm provides a highly ef fi cient and scalable 

solution method.

4.4. Comparison with State-of-the-Art Methods

In this section, we compare the performance of our proposed sparse portfolio optimization framework with 

several state-of-the-art (SOTA) algorithms. The comparison is made across two dimensions: quantitative 

performance metrics and qualitative analysis of the methods in real-world applications.

Selection of Baselines: We select the following state-of-the-art algorithms for comparison:

­ IMM (Incremental Mixture Model): A widely used portfolio selection model that employs a mixture model 

to dynamically adjust asset allocations. This algorithm provides an effective method for adjusting portfolios based 

on changing market conditions and is commonly used in practice for risk-sensitive portfolio optimization.

­ MASTER (Mean-Variance Optimized Sparse Transactional Assets): A modern approach to sparse portfolio 

selection that integrates mean-variance optimization with transaction costs. It employs a regularization technique 

to select a sparse set of assets while minimizing transaction costs, which is particularly relevant for pension funds 

that need to control management expenses.

­ Proximal Gradient Algorithm (PGA): A powerful optimization algorithm that directly solves non-convex 

optimization problems. PGA has shown to be effective in solving sparse portfolio optimization problems, making 

it a strong baseline for comparison.

Table 1.　Ablation study on the effect of sparsity constraint, operational constraints, and optimization 
algorithm. Metrics are averaged over all test windows.

Variant

Full Model (Ours)

w/o m-sparse constraint

w/o operational constraints

PGD instead of PGA

Sharpe Ratio

1.42

1.27

1.11

1.39

Cumulative 
Return (%)

115.6

125.9

132.3

113.7

Volatility (%)

12.3

15.7

18.4

12.6

Avg. Iterations

87

92

88

147
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­ SLOPE (Sorted ℓ1 -Norm Penalty): This approach uses a sorted ℓ1 -norm to promote sparsity, helping 

identify a smaller subset of assets that offer optimal return-risk tradeoffs. It is a recent advancement in sparse 

portfolio optimization that has demonstrated strong empirical results.

Quantitative Comparison: We compare the methods based on three key performance metrics: Sharpe ratio, 

cumulative return, and transaction costs. The comparison results, averaged over a 5-year test period, are 

presented in Table 2. Our proposed method outperforms the baselines in terms of Sharpe ratio and cumulative 

return, while also maintaining competitive transaction costs.

From Table 2, we observe that the proposed PGA method achieves the highest Sharpe ratio (1.42) and 

cumulative return (115.6%), while maintaining the lowest transaction costs (1.0%). This highlights the 

effectiveness of our sparse optimization approach in balancing return, risk, and cost.

Qualitative Comparison: In addition to the quantitative comparison, we also provide a qualitative analysis 

of the methods’  practical applicability:

­ IMM: While IMM performs well in dynamic environments, its reliance on complex mixture models can 

make it computationally expensive and dif fi cult to implement in real-time applications, particularly when 

handling large portfolios.

­ MASTER: MASTER provides a good trade-off between performance and transaction costs, but its mean-

variance optimization may not fully capture the long-term risk-return tradeoffs required by pension funds. 

Additionally, it does not impose as strict a sparsity constraint as PGA, potentially leading to portfolios with 

higher complexity.

­ PGA (Ours): The PGA method is particularly suited for pension funds due to its ability to optimize 

portfolios under both return and risk constraints while keeping the number of active assets low. It is 

computationally efficient and guarantees global optimality, making it ideal for large-scale portfolio management.

­ SLOPE: SLOPE offers a good balance between sparsity and performance, but its reliance on a 

regularization penalty may lead to suboptimal asset selections compared to the PGA, especially when dealing 

with large datasets where more refined optimization is needed.

In summary, the proposed PGA method not only outperforms the selected baselines quantitatively but also 

offers advantages in terms of real-world applicability, making it a highly competitive choice for sparse portfolio 

optimization in pension fund management.

4.5. Case Study

To further demonstrate the practical value of our proposed method, we conduct an in-depth case study based 

on a real-world pension fund scenario. We select a representative portfolio composed of 30 U.S. large-cap stocks 

from the CRSP database, covering the period from January 2015 to December 2020. This window includes both 

stable market conditions and significant volatility periods, such as the COVID-19 market shock in early 2020, 

providing a robust environment for stress-testing the model.

Case Selection: The assets are selected based on their consistent inclusion in major pension fund holdings, 

including sectors such as technology, healthcare, fi nance, and consumer staples. Each asset’s daily return is 

computed from historical adjusted closing prices. The input to the model includes:

● A return matrix R ∈ R1260 × 30, where each row corresponds to a trading day and each column to an asset.

Table 2.　Comparison of performance across different methods. Metrics are averaged over all test windows.

Method

IMM

MASTER

PGA (Ours)

SLOPE

Sharpe Ratio

1.15

1.21

1.42

1.18

Cumulative Return (%)

92.5

105.4

115.6

98.7

Transaction Costs (%)

2.0

1.5

1.0

1.2
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● A sparsity parameter m = 10, constraining the portfolio to at most 10 active assets.

● Constraints: long-only (w ≥ 0), self-financing w⊤1 = 1, ensuring that the sum of portfolio weights equals 1, 

and m-sparsity  w
0 ≤m, limiting the number 0 of active assets to 10.

Case Analysis: Using the Proximal Gradient Algorithm (PGA), we solve the constrained optimization 

problem to maximize the Sharpe ratio. The process involves the following steps:

(1) The expected return vector µ and covariance matrix Σ are computed using the input return matrix.

(2) The algorithm is initialized with a uniform weight vector w0, and iteratively updated using gradient and 

proximal steps.

(3) The optimization converges after 164 iterations under the con fi gured tolerance ϵ = 10−6, producing a 

sparse weight vector w* ÎR30 with exactly 10 non-zero elements.

The resulting portfolio includes selected assets such as AAPL, JNJ, MSFT, VZ, and JPM, with their 

corresponding weights reflecting optimal risk-adjusted allocation. The final Sharpe ratio over the subsequent 6-

month test window reaches 1.48, with a cumulative return of 11.3% and portfolio volatility of 7.4% (as shown in 

Figure 4).

Case Discussion: This case highlights several advantages of our approach:

● The m-sparse constraint ensures that the fi nal portfolio consists of a manageable number of assets, 

reducing transaction costs and simplifying fund administration.

● The integrated long-only and self- fi nancing constraints ensure the strategy is directly applicable in 

practical pension fund operations.

● The PGA algorithm efficiently handles the non-convex optimization problem and converges rapidly, even 

in high-dimensional settings.

Moreover, during the COVID-19 downturn in March 2020, the portfolio constructed by our method 

exhibited lower drawdown compared to equal-weighted and mean-variance benchmarks, primarily due to its 

sparse and stable asset exposure. This suggests that the proposed method is capable of dynamically balancing 

risk and return under real-world market turbulence while adhering to operational constraints.

In conclusion, the case study provides strong empirical evidence that the proposed framework not only 

delivers competitive performance metrics but also satis fi es the practical requirements of institutional pension 

portfolio management.

5. Conclusion and Future Work

In this paper, we proposed a novel portfolio optimization framework that introduces an m-sparse constraint 

Figure 4.　Optimized portfolio asset weights for the selected portfolio using the PGA method. The portfolio 
consists of 10 active assets chosen under the m-sparsity constraint, with weights reflecting optimal risk-adjusted 
allocation.
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into the pension fund portfolio selection process. This constraint helps control management costs by reducing 

the number of active assets while maintaining strong portfolio performance. We also presented a comprehensive 

optimization framework that incorporates self-financing and long-only constraints to ensure the feasibility and 

stability of the portfolio in real-world operations. To solve the resulting non-convex optimization problem effi

ciently, we adapted the Proximal Gradient Algorithm (PGA), which guarantees global optimality with high 

computational efficiency.

Our proposed framework demonstrated signi fi cant advantages over state-of-the-art methods, including 

improved performance in terms of Sharpe ratio and cumulative return, while minimizing transaction costs. 

Extensive experiments show that our method is highly scalable and efficient, making it a practical solution for 

large-scale pension fund portfolio optimization.

However, there are still limitations in our approach. First, while the m-sparse constraint reduces portfolio 

complexity, it may not always capture the best risk-return trade-off when the optimal portfolio requires a higher 

number of active assets. Second, the current framework assumes that the input data (such as expected returns 

and covariance) is perfectly known, which may not always be the case in real-world applications where 

uncertainty and estimation errors are prevalent.

Future work will focus on addressing these limitations. We plan to explore the integration of more advanced 

uncertainty modeling techniques, such as robust optimization or Bayesian methods, to account for estimation 

errors in the input data. Additionally, we aim to extend the framework to handle dynamic portfolio optimization, 

where asset allocations can evolve over time based on changing market conditions. Finally, we intend to 

investigate the application of our approach to other types of institutional portfolios, such as endowments or 

sovereign wealth funds, to further validate its robustness and scalability across different domains.
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