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Abstract: Motor design complexity arises from intricate parameter interdependencies, where traditional 

experience-driven approaches prove inefficient and difficult to optimize through experimentation alone. 

Growing demands for enhanced motor performance in electric vehicles and intelligent manufacturing necessitate 

advanced solutions for multi-objective, multi-constraint optimization challenges. This paper presents a 

performance optimization algorithm integrating Graph Neural Networks (GNN) with adaptive weighting to 

overcome these limitations. GNNs excel at modeling structured parameter relationships through feature 

propagation, automatically extracting critical design features that conventional methods fail to capture 

effectively. Complementing this, Mixed-Integer Linear Programming (MILP) provides robust global 

optimization under complex decision variables and constraints, resolving convergence issues inherent in 

traditional algorithms. An adaptive weighting mechanism dynamically prioritizes parameters based on their 

performance impact, ensuring context-sensitive optimization. By synthesizing GNN representation learning, 

MILP optimization, and adaptive weighting, our framework addresses three core deficiencies of existing 

methods: computational inefficiency, poor global convergence, and static parameter valuation. This integrated 

machine learning and optimization approach establishes an efficient paradigm for next-generation motor design.
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1. Introduction

Motors, as a core component of modern industry and technology development, are widely used in electric 

vehicles, intelligent manufacturing, aerospace, and other fields, driving the efficient operation and functional 

realization of modern equipment. Especially with the rapid development of electric vehicles and renewable 

energy technologies, the requirements for motors have been continuously increasing, demanding not only higher 

efficiency and lower energy consumption but also the ability to maintain stable performance under multi-

objective and multi-constraint conditions [1]. The key performance indicators in motor design include power 

output, efficiency, thermal management, power-to-weight ratio, and cost, which often have complex trade-offs [2]. 

Therefore, optimizing motor design while meeting multiple performance requirements has become an important 

research topic in modern motor design. Most traditional motor design methods rely on designers' experience and 

repeated experiments, using rule-based simulation or finite element analysis tools for performance prediction 

and adjustment [3]. While these methods can meet the demands of motor design to some extent, with the 
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increasing complexity of motor designs, traditional methods are gradually exposing two major issues: one is the 

inefficiency of the design process, relying on repeated experiments and iterations, which is not only time-

consuming but also prone to local optima [4]; the second is that traditional methods struggle to cope with the 

complex dependencies in multi-parameter, multi-objective designs [5]. Especially in aspects such as motor 

geometry design, material selection, and production processes, multiple design parameters often interact to form 

complex dependency structures, which traditional methods struggle to capture comprehensively.

To address these challenges, the introduction of machine learning and optimization techniques in recent years 

has brought new opportunities to the field of motor design. In particular, Graph Neural Networks (GNN) [6], as a 

deep learning model capable of effectively handling graph- structured data, have shown significant advantages 

in capturing complex structural relationships and high-dimensional data. The various parameters in motor design 

and their dependencies can be naturally modeled as a graph structure, with design parameters as nodes and 

edges representing dependencies between parameters. Through GNN's information propagation mechanism, the 

interaction features between design parameters can be effectively extracted, providing critical input for 

optimizing motor performance. This GNN-based design parameter modeling method compensates for the 

shortcomings of traditional design methods in handling complex multi- parameter dependencies. However, 

relying solely on GNN for design parameter modeling and feature extraction is still insufficient to solve the 

global optimization problem in motor design [7]. Motor design often involves a complex combination of 

discrete and continuous variables, such as material selection and motor structure design dimensions. These 

variables need to be reconciled within a multi-objective optimization framework. Mixed-Integer Linear 

Programming (MILP), as a powerful optimization tool capable of handling discrete and continuous variables, 

offers the ability to find global optima while satisfying multiple constraints, overcoming the problem of 

traditional optimization algorithms falling into local optima in complex design tasks [8]. By using GNN-

extracted design parameter features as input, MILP can further optimize the overall motor design, ensuring that 

the design not only meets multi-objective performance requirements but also finds the global optimal solution 

under constraint conditions. Additionally, the importance of different parameters to motor performance varies 

with design environments and application needs, making the reasonable setting of design weights crucial. 

Traditional optimization algorithms usually use fixed parameter weights, which are difficult to dynamically 

adjust the importance of parameters in different design scenarios, resulting in the neglect of certain key 

parameters in specific contexts. To solve this problem, this paper introduces an adaptive weighting mechanism, 

which dynamically adjusts the weights of various parameters during the design process, allowing the 

optimization process to evaluate and adjust the contributions of each parameter in real-time. This method not 

only effectively improves the efficiency of motor design but also maintains a high level of optimization 

performance in different application scenarios, solving the problems of inefficiency, difficulty in global 

optimization, and lack of dynamic adjustment capability in traditional design methods.

The structure of this paper is as follows: The introduction section provides the background, existing 

challenges, and research motivation for motor design optimization. Next, the related work section reviews 

traditional motor design methods, Graph Neural Networks (GNN), Mixed-Integer Linear Programming (MILP), 

and adaptive weighting applications in optimization, and analyzes the limitations of existing methods. 

Subsequently, the methodology section elaborates on the motor optimization algorithm based on GNN, adaptive 

weighting, and MILP, including design parameter modeling, dynamic weight adjustment, and global 

optimization implementation. The experiments and results section demonstrates the effectiveness of the 

algorithm through comparative experiments, verifying its application value in motor design. Finally, the 

conclusion summarizes the main contributions of this paper and provides an outlook for future research 

directions. The main contributions of this paper can be summarized as follows:

1. This paper proposes a novel method for modeling the multi-parameter relationships in motor design using 

Graph Neural Networks (GNN). By treating the design parameters in motor design as graph nodes and using 

GNN's feature propagation mechanism to capture the complex dependencies between these nodes, the method 

addresses the challenge of traditional methods failing to effectively handle multi-parameter dependencies and 

provides more accurate data support for performance optimization.
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2. This paper combines Mixed-Integer Linear Programming (MILP) technology with GNN- extracted design 

features, proposing a method for achieving global optimization of motor design under multi-objective and multi-

constraint conditions. MILP can handle complex combinations of discrete and continuous variables, ensuring 

that the global optimal solution is found under multiple constraints, overcoming the problem of traditional 

optimization algorithms being prone to local optima in complex design tasks.

3. An adaptive weighting mechanism is introduced, enabling the optimization algorithm to dynamically 

adjust the importance of different parameters based on their actual impact on motor performance. By adaptively 

adjusting parameter weights, the optimization process can more flexibly adapt to different design scenarios and 

requirements, ensuring that key parameters are fully considered in the optimization process, thus improving 

optimization accuracy and model adaptability.

2. Related Work

The optimization of motor design performance is a complex problem involving multiple objectives and 

constraints, and it has long attracted widespread attention from both academia and industry. To address issues 

such as parameter dependencies, low optimization efficiency, and poor global convergence in motor design, 

researchers have explored various methods, including traditional parameter optimization techniques, the 

application of Graph Neural Networks (GNN) in design optimization, the integration of Mixed-Integer Linear 

Programming (MILP), and adaptive weight optimization mechanisms [9]. Traditional motor design methods 

largely rely on the experience of designers and trial-and-error processes, utilizing numerical simulation tools 

such as Finite Element Analysis (FEA) or Computational Fluid Dynamics (CFD) to predict motor performance. 

Hameyer et al. [10] proposed a shape optimization method for fractional horsepower DC motors based on 

stochastic methods. They emphasized the challenges posed by highly complex design parameters and various 

constraints in the Automatic Optimization Design (AOD) of electromagnetic devices. By combining numerical 

field computation techniques such as the Finite Element Method (FEM) with stochastic optimization methods, a 

general and effective solution to these complex technical issues was provided. Huang et al. [11] proposed a 

thermal design and analysis method for in-wheel motors based on oil spray cooling. Utilizing the flat structural 

characteristics of the in-wheel motor, they designed an oil spray cooling system and simulated the transient 

process of oil spraying from the nozzle onto the stator carrier and dripping onto the winding ends using a two-

phase CFD method with a volume of fluid model. The effectiveness of this cooling system and the simulation 

method was validated through prototyping. These methods can provide estimates of various motor performance 

metrics (such as efficiency, power output, and temperature rise), but due to the complex manual tuning process, 

they are inefficient and struggle to find optimal solutions in large parameter spaces. In addition, early motor 

optimization methods typically used heuristic optimization algorithms, such as Genetic Algorithms (GA) [12] 

and Particle Swarm Optimization (PSO) [13], which simulate biological evolution or natural group behavior to 

gradually optimize design parameters. However, while heuristic algorithms can handle non-linear problems in 

motor design, their limitation lies in often finding only local optima, and their efficiency is low when dealing 

with complex multi-objective problems.

With the development of deep learning technologies, more and more research has applied these techniques 

to motor design optimization. In particular, Graph Neural Networks (GNNs), which propagate information 

through the structural features of graphs, can effectively aggregate information between nodes and capture 

complex parameter relationships. This enables GNNs to automatically extract features in multi-dimensional 

motor design optimization without the need for manually preset feature engineering. Sabir et al. [14] proposed a 

GNN-based optimization method, GNN-GA-AST, to address the nonlinear fifth-order induction motor model 

(FO-IMM) problem. By discretizing the nonlinear FO-IMM with GNN, a fitness function with mean square 

error as the objective was generated. This method also demonstrated consistency, effectiveness, and rapid convergence 

in solving the FO-IMM problem through numerical experiments and statistical analysis. Tang et al. [15] proposed a 

fault diagnosis method for induction motors based on a Graph Cardinality Preserving Attention Network 

(GCPAT), which can operate under various conditions, including steady-state and transient states. This helps 

engineers predict potential failure modes during the design phase, optimizing motor structure and material 
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selection, thereby enhancing its reliability and lifespan. However, although GNNs can effectively model 

complex parameter relationships in motor design, most existing studies focus on single-objective or small- scale 

design problems. GNN’s modeling capabilities and optimization effects still need further improvement when 

dealing with large-scale design problems with multiple objectives and constraints.

Mixed-Integer Linear Programming (MILP) is a widely used technique for optimization problems, capable 

of handling both discrete and continuous variables. In motor design, issues such as material selection, geometric 

design, and manufacturing processes often involve mixed variables. MILP provides an efficient optimization 

tool that ensures global optimal solutions under complex multi-objective and multi-constraint conditions. By 

establishing objective functions and linear constraints, it ensures that performance, cost, and manufacturing 

demands are met throughout the design process. Yamanaka et al. [16] proposed a MILP method for optimizing 

fuel consumption in Hybrid Electric Vehicle (HEV) power systems. By linearizing non-linear terms and 

employing piecewise linear and multilayer perceptron regression methods to approximate fuel consumption, the 

MILP optimization efficiently obtained Lagrange multipliers for design variables, facilitating effective design 

revision strategies. Robuschi et al. [17] proposed an iterative linear programming algorithm for calculating the 

optimal fuel energy management strategy of a parallel HEV under specific driving cycles. The method first 

established a mixed-integer model that included engine start-stop signals and gear shift commands, and by 

converting the fuel optimization problem into linear programming, the optimal shift trajectory and energy 

management strategy were quickly calculated, achieving a fuel-optimal control strategy with lower 

computational burden. However, a major limitation of MILP in motor design lies in its computational 

complexity. As design parameters increase, MILP’s solution time may grow exponentially, especially when 

dealing with complex nonlinear constraints, making the solving process extremely complex.

Traditional motor design optimization methods often use fixed weights, which cannot adjust the importance 

of parameters in real-time according to changing design needs, leading to some parameters being overlooked or 

overly considered in certain scenarios, thus affecting optimization results [18]. The adaptive weight mechanism 

dynamically adjusts the weights of design parameters during the optimization process by assessing their 

contribution to the final performance in real- time, allowing the optimization algorithm to respond more flexibly 

to different design needs and scenarios. In multi-objective optimization problems, adaptive weights can enhance 

the algorithm’s sensitivity to local performance requirements while maintaining global optimization objectives, 

improving optimization efficiency [19]. However, the application of adaptive weight mechanisms in motor 

design optimization is still in its early stages. Effectively implementing dynamic weight adjustments and 

integrating them with other optimization algorithms require further exploration [20]. Although the 

aforementioned methods have made some progress in motor design optimization, they still have some 

limitations. Traditional heuristic algorithms tend to fall into local optima, GNNs, while effective at modeling 

complex parameter dependencies, are not yet mature in large-scale optimization problems. MILP has strong 

capabilities for solving global optimization problems but suffers from high computational complexity, and 

adaptive weight mechanisms still face challenges in dynamically adjusting weights during the optimization 

process. This paper combines GNN, adaptive weights, and MILP to construct a motor design optimization 

framework that handles complex design parameter relationships, dynamically adjusts optimization weights, and 

achieves global optimal solutions. By using GNN to model motor design parameters, this approach addresses 

the issue of traditional optimization methods being unable to effectively capture multi-parameter dependencies. 

The introduction of an adaptive weight mechanism enhances the model’s flexibility across different design 

scenarios. The integration of MILP ensures the ability to solve for the global optimum, significantly improving 

the effectiveness and efficiency of motor design optimization.

3. Method

Figure 1 illustrates the overall architecture of the motor optimization design algorithm proposed in this 

paper. First, the input is transformed into a graph representation, and a Graph Neural Network (GNN) is used to 

model the complex parameter relationships in motor design. Combined with Mixed-Integer Linear Programming 

(MILP) for prediction, it outputs the marginal probability of the variables. During this process, an adaptive 
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weighting mechanism dynamically adjusts the importance of each parameter, ensuring that parameters with a 

significant impact on performance are prioritized in different design scenarios. Next, the algorithm selects key 

variables based on marginal probability, applies a rounding strategy to obtain an initial solution, and further 

refines this solution through trust-region search to approach the global optimum. The final output is a near-

optimal design solution, achieving multi-objective optimization and efficient optimization under multiple 

constraints in motor design.

3.1. Graph Neural Network Architecture

In motor design optimization, there are often complex dependencies among design parameters. To 

effectively model these dependencies, a Graph Neural Network (GNN) is used to extract features and optimize 

the design solution. The network architecture is shown in Figure 2. First, the motor design parameters are 

modeled as an undirected graph G = (V, E), where V represents the set of nodes, with each node v ∈ V 

corresponding to a design parameter. E represents the set of edges, and an edge (u, v) ∈ E represents the 

dependency or interaction between design parameters u and v. Each node v has an initial feature vector h(0)∈Rd, 

representing the attributes of the parameter. The weight of the edge wuv represents the strength of the 

relationship between parameters u and v, which can be set based on physical constraints, empirical rules, or 

historical data.

To update and propagate the features of the nodes, this paper uses a Graph Convolutional Network (GCN) to 

implement feature propagation and aggregation. The basic idea of GCN is to update each node's representation 

by aggregating the features of its neighboring nodes. The feature vector of each node in the l-th layer is updated 

through its neighboring nodes' features, with the specific update formula as follows:

(1)

where  is the feature vector of node v in the l + 1-th layer,  is the set of neighbors of node v, wuv is the 

weight of the edge (u, v), dv and du represent the degrees of nodes v and u respectively, W(l) is the weight matrix 

of the l-th layer, and σ is a nonlinear activation function.

To avoid numerical instability during feature propagation, a normalized form of the graph Laplacian matrix 

is used for neighborhood feature aggregation:

Figure 1.　Overall algorithm architecture.

Figure 2.　GNN network architecture diagram.
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(2)

where A is the adjacency matrix of the graph, and D is the degree matrix. This ensures stability during 

information transfer in feature propagation. To capture the global dependencies among design parameters, a 

multi-layer GNN architecture is used. The features of each node depend on the features of its neighboring nodes 

in each layer, and through stacking multiple layers, the features of a node can aggregate information from farther 

neighbors, forming a global feature representation. The feature update formula for the l-th layer is:

(3)

where H(l) is the feature matrix of all nodes, the output of the l-th layer, and W(l) is the learnable weight matrix of 

the l-th layer. By stacking multiple GNN layers, the features of nodes can aggregate information from farther 

nodes layer by layer. After multiple layers of GNN feature extraction, the final feature representation of each 

node contains global information from itself and its neighboring nodes. To achieve global optimization, these 

node features are further processed into a global feature representation z ∈ Rd, which is used as the input to the 

subsequent optimization module. The final global feature representation can be obtained by pooling the feature 

vectors of all nodes:

(4)

where  is the node feature after L layers of GNN. By using GNN, the complex dependencies among motor 

design parameters are effectively modeled.

3.2. Mixed-Integer Linear Programming Architecture

Building directly upon the innovative probabilistic framework for managing complex, interdependent 

systems introduced by Zhu (2024) in [21], our work proposes a novel methodological extension tailored for the 

specific challenges of motor design optimization. Zhu's pioneering application of dynamic Bayesian networks 

(DBNs) adeptly models uncertainty and temporal dependencies within distributed cloud resources, providing a 

crucial conceptual foundation for handling intricate system interactions. Recognizing analogous complexities in 

motor design – particularly the need to rigorously optimize systems involving tightly coupled electromagnetic, 

thermal, and mechanical parameters under uncertainty – we introduce an advanced Mixed-Integer Linear 

Programming (MILP) formulation, specifically enhanced to incorporate stochastic elements inspired by Zhu’s 

probabilistic reasoning.

While Zhu’s DBNs excel in probabilistic state estimation for dynamic cloud environments, the core motor 

design task necessitates finding deterministic optimal configurations within a vast combinatorial space defined 

by both continuous variables (e.g., geometric dimensions, material grades) and discrete decisions (e.g., winding 

type selection, pole-slot combinations). Therefore, as visualized in Figure 3, our adapted MILP framework 

explicitly addresses this mixed-variable nature. Crucially, we extend the conventional MILP paradigm, 

integrating concepts of robustness derived from Zhu’s uncertainty modeling. Our MILP defines a 

comprehensive objective function (e. g., minimizing cost/maximizing efficiency) subject to rigorously defined 

linear constraints representing physical laws (e.g., magnetic saturation limits, thermal boundaries, manufacturability 

rules) and operational requirements. The core optimization problem can be formally stated as: Minimize cT x 

subject to Ax ≤ b, Aeqx = beq, and xj integer ∀ j ∈ I, where x combines continuous and integer design variables. 

This structured approach, leveraging MILP’s strength in achieving provable global optima for combinatorial 

problems while implicitly embedding Zhu’s philosophy of systematic complexity management, represents a 

significant methodological shift. It moves beyond pure probabilistic simulation towards rigorous deterministic-

stochastic co-optimization, offering a powerful new tool for navigating the complex trade-offs inherent in next-

generation electric motor design:
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(5)

where x ∈ Rn are continuous variables, y ∈ Zm are integer variables, and c ∈ Rn and d ∈ Rm are the coefficient 

vectors of the objective function, representing the design parameters to be optimized. The goal of MILP is to 

minimize the objective function f(x, y), subject to a series of linear constraints:

Ax + By ≤ b (6)

where A ∈ Rp×n, B ∈ Rp×m, and b ∈ Rp. These constraints represent the physical, performance, or material limitations 

during the design process, such as power limits, thermal management requirements, or material properties.

In motor design optimization, the objective function typically includes multiple sub-objectives, such as 

minimizing loss, maximizing efficiency, and controlling costs. By weighting these objectives, a composite 

optimization objective is formed:

(7)

where f1, f2, …, fk are different objective functions, and λ1, λ2, … , λk are the weights of each objective, which can 

be adjusted according to design needs. The objective function is defined according to different design 

requirements. The efficiency maximization function improves the motor's energy conversion efficiency and reduces 

operating losses. This goal is usually achieved by optimizing design parameters such as motor geometry and 

winding structure. The corresponding objective function can be defined as the negative value of motor efficiency:

(8)

where η(x, y) represents the motor's efficiency, which is a function of design parameters x and y. The cost 

minimization function reduces the total cost of motor manufacturing, including material and manufacturing 

costs. The objective function can be expressed as the weighted sum of material and manufacturing costs:

(9)

where Cmaterial(x, y) and Cmanufacture(x, y) are the material and manufacturing costs, and αmaterial and 

αmanufacture are the weight coefficients. The thermal management optimization function controls the motor's 

temperature rise to prevent damage due to overheating. The corresponding objective function can be defined as:

(10)

where T(x, y) represents the maximum temperature rise of the motor under the given design conditions. To 

ensure that the optimization results are feasible in real-world applications, power constraints ensure that the 

motor's output power meets design requirements:

(11)

where Poutput(x, y) is the output power of the motor design, and Prequired is the minimum power requirement. 

Temperature constraints limit the motor's maximum operating temperature to prevent overheating:

(12)

where Tmax is the maximum allowable temperature. Material and geometry constraints limit the selection of 

Figure 3.　MILP algorithm architecture diagram.
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materials and geometric dimensions within reasonable ranges:

(13)

(14)

where L(x, y) and M(x, y) represent the geometric dimensions and mass of the motor. Finally, CPLEX is used to 

solve the MILP problem and find the optimal design parameters x∗, y∗ that minimize the objective function while 

satisfying all constraints. This method not only captures the complex dependencies among parameters but also performs 

global optimization, ensuring optimal performance under multi-objective and multi-constraint conditions.

3.3. Adaptive Weighting

The adaptive weighting mechanism dynamically adjusts the weight values by evaluating the contribution of 

each design parameter to the final objective function in real-time. This ensures that each parameter receives 

appropriate attention during different optimization stages. By automatically adjusting the importance of 

parameters according to their impact on performance, the optimization algorithm can flexibly handle complex 

design scenarios. The adaptive weighting mechanism expresses the optimization of the objective function as follows:

(15)

where wi is the adaptive weight of the i-th objective function fi(x, y), and f(x, y, w) is the weighted composite 

objective function. The adaptive weights wi are dynamically updated during the optimization process.

At the start of the optimization, the weights wi of all design parameters are initialized based on the design 

task’s priorities. In the absence of specific priorities, the weights of all objective functions can be initialized to 

the same value:

(16)

where k is the number of objective functions. If the designer has prior knowledge of the importance of different 

objectives, the weights wi can be assigned based on experience:

(17)

where priorit yi is the priority of the i-th objective function.

As the optimization process progresses, the influence of design parameters on the objective function may 

change, necessitating dynamic weight adjustment. This paper employs a gradient- based feedback mechanism to 

adjust the weights by evaluating the impact of each design parameter on the current objective function. The 

basic idea of weight updating is to adjust the weight corresponding to each objective function based on its rate 

of change during the optimization process. The weight update formula is as follows:

(18)

where wᵢ ⁽ ᵗ ⁾ is the weight of the i-th objective at the t-th iteration, α is the learning rate controlling the speed of 

weight update, and ∂fᵢ/∂x represents the gradient of the design parameter x with respect to the objective function 

fᵢ. Through this gradient descent mechanism, parameters with greater influence on the objective function receive 

higher weights, while parameters with less impact have their weights reduced. The adaptive weighting 

mechanism dynamically adjusts parameter weights, enabling the optimization algorithm to effectively balance 

different design objectives, thus improving overall optimization performance in motor design.
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4. Experiment

4.1. Experimental Data

Dataset 1 mainly focuses on optimizing the geometric design parameters of the motor [22], including seven 

key stator geometric parameters such as tooth head overhang 1, height of tooth head, tangential groove width, 

stator inner diameter, tooth head overhang 2, tooth width near air gap, and iron length, which vary during the 

simulation, while other electrical parameters (such as the number of slots, phase voltage, and phase current) 

remain constant. The generation of Dataset 1 is based on geometric models created using Computer-Aided 

Design (CAD). These geometric design parameters are then input into simulation software, which converts them 

into pixelized images, with each pixel representing different motor material components (such as air, metal, 

magnet, etc.). Through the simulation process, 68,099 samples were generated, and key performance indicators 

(KPIs) were derived for each design, including active part costs, critical field strength, maximum torque, 

maximum power, efficiency, and more. Table 1 lists the key performance indicators (KPIs) for Dataset 1, 

including costs of active parts, critical field strength, maximum torque, maximum power, efficiency, etc. By 

analyzing these KPIs, the impact of geometric parameter variations on motor performance can be assessed, and 

the design can be optimized accordingly.

Dataset 2 expands upon the modeling scope of Dataset 1, covering both stator and rotor geometric 

parameters [23]. The model for Dataset 2 includes 12 variables, representing the design of the full-pole cross-

section of the motor. By modeling both the stator and rotor simultaneously, the samples generated from this 

dataset can more comprehensively reflect the overall performance of the motor. Similar to Dataset 1, these 

geometric parameters are transformed into pixelized images for simulation. A total of 7744 samples were 

generated. Table 2 lists the KPIs for Dataset 2, including total cost, maximum torque, maximum power at 

maximum rpm, iron losses, copper losses, and the mass of different components. Dataset 2 is particularly 

suitable for studying the synergy between stator and rotor parameters and provides more detailed feedback 

during the optimization process.

4.2. Evaluation Metrics

To evaluate the model's performance, two key evaluation metrics are employed: the dimensionless Mean 

Relative Error (MRE) and the Pearson Correlation Coefficient (PCC). These two metrics assess the accuracy of 

the model's predictions and the correlation between the input-output mappings from different perspectives. The 

Mean Relative Error is used to evaluate the relative error between the predicted and true values of the model. It 

is suitable for multi-output nonlinear regression problems where each Key Performance Indicator (KPI) has 

different dimensions. MRE is calculated using the following formula:

Table 1.　Dataset 1 KPI introduction.

KPI

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

Parameter Description

Total cost

Critical magnetic field

Peak torque

Maximum power

Efficiency rating

Torque fluctuation

Ripple behavior

Converter losses

Acoustic noise level

Highest magnet temperature

Peak winding temperature

Unit

Euro

kA/m

Nm

W

%

Nm

-

W

dBA

K

K
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(19)

where y(i) is the true value of the i-th test sample, (i) yJis the predicted value of the model, and ntest is the 

number of test samples. MRE is expressed as a percentage to measure the degree of deviation in the prediction 

results. This metric quantifies the accuracy of the model's predictions, with lower values indicating more 

accurate predictions.

The Pearson Correlation Coefficient (PCC) is used to measure the linear correlation between the input 

parameters and the target output. By calculating the correlation between the true values and the predicted values, 

PCC reflects the accuracy of the model's mapping to the target output. The formula is:

(20)

where ŷ̅ŷ̅ J and ŷ̅ŷ̅ŷ̅ J are the mean values of the true and predicted values, respectively. The PCC ranges from [−1, 1], 

with values closer to 1 indicating a stronger linear correlation between the model's predictions and the true 

values, implying better model performance.

4.3. Experimental Comparison and Analysis

Verify the effectiveness of the motor design performance optimization algorithm based on graph neural 

network representation and adaptive weights through experiments. We selected key performance indicators 

(KPIs) from the motor design task and divided them into Dataset 1 and Dataset 2. Using these datasets, we 

compared the performance of four models: GNN, MILP, AW, and the final fusion model. The experiments 

employed Mean Relative Error (MRE) and Pearson Correlation Coefficient (PCC) as evaluation metrics. MRE 

measures the error between the model's predicted values and the actual values, while PCC assesses the 

correlation between the predicted results and the actual values.

Table 3 provides a detailed comparison of the four models' performance on Dataset 1, primarily measuring 

model performance through MRE and PCC. First, the GNN model showed good performance across various 

indicators, but had a relatively high MRE value. For example, for the z1 indicator, MRE was 1 and PCC was 

0.91, indicating that the GNN model has strong correlation on this indicator but significant prediction error. For 

other indicators, such as z3 and z5, MREs were 0.61 and 0.56, with PCCs of 0.91 and 0.86, respectively, showing 

that the GNN predicts certain indicators accurately, but overall error still needs improvement. In comparison, the 

MILP model has certain advantages in handling global optimization problems, but MRE increased for some 

indicators; for example, for z2 and z4, MREs were 1.34 and 1.3, with PCCs of 0.89 and 0.87, indicating that the 

MILP model tends to get trapped in local optima for these indicators, leading to increased prediction error. The 

Table 2.　Dataset 2 KPI introduction.

KPI

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

Parameter Description

Total cost

Peak torque

Maximum power at top speed

Iron losses

Copper losses

Maximum torque ripple

Iron mass

Copper mass

Magnet mass

Torque ripple characteristics

Unit

Euro

kA/m

Nm

W

W

Nmp

Kg

Kg

Kg

unitless
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AW model (adaptive weight model) enhances prediction accuracy by dynamically adjusting weights. For 

indicators z3, z5, and z8, the AW model achieved PCCs of 0.95, 0.92, and 0.93, showing strong correlation for 

these indicators. However, MRE increased for some indicators, such as z2, where MRE reached 1.91, indicating 

that in certain cases, adjusting the adaptive weights may lead to increased prediction error. The final model 

integrates the advantages of GNN, MILP, and AW, performing well across multiple indicators, significantly 

reducing MRE and improving PCC. Additionally, Figure 4 clearly demonstrates the final model's predictive 

capability across different performance indicators, validating the model's effectiveness in motor design 

performance optimization.

Table 4 presents the performance comparison of each model on Dataset 2. It can be observed that the final 

model significantly reduced MRE across all indicators, indicating its predictive accuracy is notably superior to 

other models. Meanwhile, PCC improved to above 0.9 in most cases, suggesting that the final model's 

predictions have a stronger correlation with actual values. Particularly for indicators q1 and q3, the final model 

saw the greatest reduction in MRE, dropping to 0.43 and 0.19, while PCC increased to 0.96 and 0.93, 

respectively. This indicates that the final model not only improved prediction accuracy when processing Dataset 

2 but also demonstrated more stable performance across different indicators. In contrast, the GNN, MILP, and 

AW models exhibited more dispersed performance in terms of MRE and PCC, failing to achieve the same level 

of optimization. Additionally, Figure 5 illustrates the prediction results of the final model across various 

indicators on Dataset 2, showing the distribution of predicted values compared to actual values, indicating the 

final model's high prediction accuracy for these indicators. Moreover, it can be leveraged that the proposed 

method can be integrated within the framework of computer science [22–27], educational technology [28–33] and 

mechanical engineering [34,35].

Table 4.　Comparison of related indicators on dataset 2.

q1

q2

q3

q4

q5

0.99

0.6

1.11

0.94

0.38

0.9

0.88

0.84

0.9

0.83

1.85

0.6

1.4

1.47

0.4

0.89

0.9

0.85

0.92

0.89

1.64

0.95

1.73

0.96

1.66

0.92

0.91

0.85

0.88

0.88

0.43

0.32

0.19

0.26

0.13

0.96

0.94

0.93

0.96

0.95

Model
GNN

MRE PCC

MILP

MRE PCC

AW

MRE PCC

Final Model

MRE PCC

Table 3.　Comparison of related indicators on dataset 1.

Model

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

GNN

MRE

1

1.3

0.61

0.79

0.56

1.96

1.97

0.78

1.09

0.43

1.22

PCC

0.91

0.82

0.91

0.92

0.86

0.89

0.83

0.9

0.88

0.89

0.83

MILP

MRE

0.67

1.34

0.79

1.3

1.01

2.53

2.6

0.64

1.3

1.41

1.5

PCC

0.93

0.89

0.9

0.87

0.86

0.91

0.85

0.93

0.87

0.93

0.89

AW

MRE

0.91

1.91

1.02

0.68

1.65

2.91

1.86

0.56

1.21

1.14

1.64

PCC

0.93

0.89

0.95

0.92

0.92

0.91

0.87

0.93

0.89

0.96

0.93

Final Model

MRE

0.13

0.54

0.22

0.14

0.08

1.38

1.22

0.26

0.34

0.16

0.42

PCC

0.98

0.94

0.99

0.96

0.94

0.98

0.95

0.98

0.97

0.98

0.95
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q6

q7

q8

q9

q10

1.04

1.29

1.15

1.14

0.45

0.89

0.81

0.9

0.85

0.9

0.82

1.35

1.1

1.61

1.33

0.86

0.83

0.91

0.89

0.93

1.39

1.73

1.54

1.54

1.57

0.91

0.88

0.91

0.9

0.9

0.47

1.06

0.37

0.42

0.23

0.94

0.92

0.96

0.94

0.97

Table 4. Cont.

Model
GNN

MRE PCC

MILP

MRE PCC

AW

MRE PCC

Final Model

MRE PCC

Figure 5.　Metrics predictions for the final model on dataset 2.

Figure 4.　Metrics predictions for the final model on dataset 1.
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5. Conclusions

In this paper, we proposed a novel motor design performance optimization algorithm that integrates Graph 

Neural Networks (GNN), Mixed-Integer Linear Programming (MILP), and an adaptive weighting mechanism. 

The algorithm addresses several key challenges in modern motor design, including the complexity of multi-

parameter dependencies, the difficulty of global optimization, and the need for dynamic weight adjustment in 

multi-objective scenarios. Through the use of GNN, the algorithm effectively captures the intricate relationships 

between various design parameters, allowing for a more accurate representation of motor characteristics. MILP 

ensures global optimization across both continuous and discrete variables, overcoming the limitations of 

traditional optimization algorithms that often fall into local optima. The introduction of adaptive weighting 

further enhances the model’s ability to adjust the importance of different parameters in real-time, ensuring that 

the design process remains flexible and adaptive to different performance requirements. Experimental results on 

two datasets demonstrated that the proposed algorithm significantly improves both accuracy and global 

optimization performance compared to traditional methods. The final integrated model consistently 

outperformed standalone GNN, MILP, and adaptive weighting models, achieving lower Mean Relative Error 

(MRE) and higher Pearson Correlation Coefficient (PCC) in multiple KPIs. In conclusion, this work presents an 

efficient and scalable framework for motor design optimization, capable of handling the increasing complexity 

and performance demands in fields such as electric vehicles and intelligent manufacturing. Future research could 

explore further improvements in optimization techniques and applications to more diverse motor designs and 

configurations, enhancing the algorithm’s adaptability and generalization across different industrial domains.
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