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Abstract: Vision Transformers (ViT) have marked a paradigm shift in computer vision, outperforming state-of-

the-art models across diverse tasks. However, their practical deployment is hampered by high computational and 

memory demands. This study addresses the challenge by evaluating four primary model compression 

techniques: quantization, low-rank approximation, knowledge distillation, and pruning. We methodically 

analyze and compare the efficacy of these techniques and their combinations in optimizing ViTs for resource-

constrained environments. Our comprehensive experimental evaluation demonstrates that these methods 

facilitate a balanced compromise between model accuracy and computational efficiency, paving the way for 

wider application in edge computing devices.
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1. Introduction

Transformers, as introduced by Vaswani et al. [1], have revolutionized machine learning with their high 

capacity for modeling data, scalability, and exceptional aptitude for capturing long-range dependencies. 

Originating in the natural language processing (NLP) sphere with successes in machine translation and text 

summarization [2], Transformers now extend their utility to computer vision tasks such as image classification 

[3] and object detection [4]. More recently, their prowess has been harnessed in the field of multimodal 

sentiment analysis [5], where they integrate and interpret diverse data streams—textual, visual, and acoustic [6,

7]—to assess emotional responses [8]. The application of Transformers has also expanded into the healthcare 

domain [9], facilitating advancements in areas such as disease detection [10], medical imaging analysis [11,12], 

and the processing of electronic health records. These technologies are pivotal in developing predictive models 

for patient outcomes, enhancing diagnostic accuracy, and personalizing treatment strategies, showcasing the 

potential of Transformers to impact patient care significantly. Unlike previous research in NLP that grapples 

with the quadratic complexity of softmax-attention in lengthy sequences as noted by Child et al. [13], Vision 

Transformers (ViTs) manage shorter, fixed-length input sequences. As a result, softmax- attention represents a 

reduced share of the total floating-point operations (FLOPs) in ViTs, presenting a distinct set of optimization 
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challenges and underscoring the need for specialized model compression strategies.

The Vision Transformer (ViT) [14], an innovative architecture derived from NLP methodologies, has 

demonstrated that transforming image patches into token sequences processed by transformer blocks can 

achieve, and sometimes surpass, the accuracy of traditional CNN architectures. This breakthrough has catalyzed 

a paradigm shift in image processing. However, the advanced performance of ViT is accompanied by a 

substantially large parameter set, numbering in the hundreds of millions, which results in considerable memory 

and computational overhead during inference. Such demands render ViTs less viable for devices with limited 

resources or power constraints. Consequently, the

development and refinement of model compression techniques for ViTs have become critical for their 

adoption in industrial applications, where efficiency and resource management are paramount.

In contrast to well-explored deep learning models, the model compression landscape for Vision 

Transformers remains relatively untapped. This paper presents a systematic exploration of model compression 

strategies for ViTs, focusing on quantization, low-rank approximation, knowledge distillation, and pruning. 

Through a thorough comparative analysis, we assess the individual and collective impact of these techniques on 

model efficiency. Our investigation also delves into the potential synergistic effects of combining different 

methods, with the goal of enhancing performance. The extensive experimental findings confirm that our 

proposed approaches facilitate a favorable balance between maintaining accuracy and improving computational 

efficiency, which is essential for practical deployments.

2. Related work

2.1. Quantization

Quantization has emerged as a cornerstone technique for promoting efficient inference in neural networks. 

This process involves converting a network into a low-bit representation, thereby reducing both computational 

demands and memory footprint, with minimal impact on model performance. A critical aspect of this technique 

is establishing an appropriate clipping range for the weights. Krishnamoorthi [15] suggests determining this 

range by evaluating all weights within a layer’s convo- lutional filters, whereas Shen et al. [16] adopt a 

groupwise quantization approach for Transformers. To mitigate the potential loss in accuracy that quantization 

may introduce, Quantization-Aware Train- ing (QAT) has been proposed. QAT involves conducting the standard 

forward and backward passes using the floating-point representation of the quantized model, followed by the re-

quantization of model parameters after each gradient update, thus preserving accuracy while leveraging the 

benefits of quantization.

2.2. Low-rank Approximation

The Vision Transformer (ViT) capitalizes on the self-attention mechanism, which inherently entails a 

quadratic computational complexity, a significant challenge for scalability. Chen et al. [17] highlight that the 

attention matrices within ViTs inherently possess low-rank properties [18], presenting an opportunity for 

complexity reduction [19]. Leveraging low-rank matrix approximation on these attention matrices emerges as a 

promising approach to mitigating computational costs. A variety of methodologies have been developed for this 

purpose, including Nyström-based methods [20, 21], Performer [22], and Linformer [23], each with its own 

unique implementation and suitability for integration with pre-trained ViT models during fine-tuning and 

validation phases. Moreover, the combination of low-rank approximation with sparse attention mechanisms, as 

suggested by Chen et al. [17], has been shown to yield even more refined approximations, enhancing the 

efficiency and effectiveness of ViTs.

2.3. Knowledge Distillation

Knowledge distillation is a refined model compression technique wherein a compact ’ student’  model is 

trained to emulate a more complex ’ teacher’  model by utilizing the teacher’s soft labels. These soft labels are 

recognized for their rich informational content, often leading to superior performance in the student model as 
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compared to training with hard labels [24]. The efficacy of soft labels in enhancing student learning has been 

corroborated by Yuan et al. [25] and Wei et al. [26]. A novel advancement in this domain is the introduction of a 

distillation token in Vision Transformers [14] by Touvron et al. [27]. This token, analogous to the class token but 

dedicated to capturing the teacher’s predictions, engages through the self-attention mechanism, optimizing the 

distillation process. Such bespoke approaches have demonstrated considerable gains over conventional 

distillation techniques, underscoring the potential for transformer-specific optimization strategies.

2.4. Pruning

Pruning represents a widely endorsed method to streamline the architecture of Vision Transformers by 

reducing their dimensional complexity [28]. Central to this technique is the assignment of an importance score 

to each model dimension, allowing for the selective elimination of dimensions

deemed less critical, based on their scores. This targeted reduction aims to maintain a robust pruning ratio 

while preserving the model’s accuracy. The strategy of dimensional redistribution, as proposed by Yang et al 

[29], may be integrated into the pruning process, further refining the model’s performance. Intriguingly, studies 

have shown that a model, post-pruning, can occasionally surpass the original in performance, indicating the 

potential of pruning to not only simplify but also to enhance the functionality of the model [30].

3. Methodology

3.1. Quantization

3.1.1. Basic Concept

The overarching objective of quantization is to reduce the precision of model parameters (θ) and 

intermediate activation maps to a lower precision format, such as 8-bit integers, while minimizing the impact on 

the model’s generalization performance. The initial step in this process involves defining a quantization 

function capable of mapping weights and activations to a discrete set of values. A commonly utilized function 

for this purpose is delineated as follows:

Q(r) = Int(r/S) − Z, (1)

where Q represents the quantization mapping function, r denotes a real-valued input (e.g., weights, activation), S 

is a scaling factor, and Z is an integer zero point. This mechanism, known as uniform quantization, ensures the 

equidistant spacing of resultant values. It’s noteworthy that alternative non-uniform quantization strategies 

exist. Moreover, the original real value r can be approximated from its quantized counterpart Q(r) through a 

process known as dequantization:

                                                       r˜ = S(Q(r) + Z),                                                               (2)

where the approximation r˜ may differ from r due to rounding errors inherent in quantization.

A critical aspect of quantization is determining the optimal scaling factor S, which effectively partitions real 

values r into discrete segments:

S =
β - α
2b - 1'

(3)

with [α,β] representing the clipping range and b denoting the bit width of quantization. The selection of the 

clipping range [α,β], a process termed as calibration, is pivotal. A straightforward method involves employing 

the minimum and maximum of the inputs as the clipping range, i.e., α = rmin and β = rmax, corresponding to an 

asymmetric quantization scheme where −α ̸= β. Alternatively, a symmetric quantization approach, where −α = 

β = max(|rmax|, |rmin|), can be employed. In such cases, the quantization function in Eq. 1 can be simplified by 

setting Z = 0.

3.1.2. Post Training Quantization

Post Training Quantization (PTQ) streamlines the quantization process by adjusting weights directly, 

without necessitating further fine-tuning. This efficiency, however, may lead to notable accuracy declines due to 

the inherent precision loss of quantization. Liu et al. [31] observed substantial accu- racy reductions when 
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applying quantization to LayerNorm and Softmax layers within Transformer architectures. Lin et al. [32] 

attributed these discrepancies to the polarized distribution of activation values in LayerNorm layers and 

attention map values. Specifically, significant inter-channel variabil- ity within LayerNorm layer inputs (as 

illustrated on the left side of Figure 1) induces considerable quantization errors when employing layer-wise 

quantization approaches. Moreover, a predominance of small-value distributions in attention maps—with only 

sparse outliers approaching a value of 1—further exacerbates performance declines under uniform quantization 

strategies. Addressing these challenges, Lin et al. [32] introduced a novel quantization approach employing 

Powers-of-Two Scale for LayerNorm and Log-Int-Softmax for Softmax layers, aiming to mitigate the adverse 

effects of traditional quantization methods.

(a) Data Distribution in LayerNorm (b) Data Distribution in Attention Maps

Figure 1. Left [32]: Channel-wise minimum and maximum values of the last LayerNorm inputs in full precision 

Swin-B. Right [32]: Distribution of the attention map values from the first layer of ViT-L, and visualizing the 

quantized bins using uniform or Log2 quantization with 4-bit.

3.1.3. Quantization Aware Training

Applying quantization directly to a fully trained model can inadvertently perturb model parameters, leading 

to notable performance declines. An effective strategy to circumvent this issue involves re-training the model 

with quantized parameters, thereby guiding the model towards a more favorable loss landscape. Quantization 

Aware Training (QAT) stands out as a prominent technique for this purpose. In QAT, the standard forward and 

backward processes are executed on a model represented in floating-point, yet parameters are re-quantized 

following each gradient update, ensuring the model adapts to quantization-induced changes.

Learned Step Size Quantization (LSQ) [33], an advancement in this field, refines the quantizer configuration 

process and has set new benchmarks in quantization performance by optimizing the quantization intervals. 

Similarly, DIFFQ [34] introduces a differentiable model compression technique that eschews the need for 

gradient approximation methods such as the Straight Through Estimator (STE). By employing pseudo 

quantization noise, DIFFQ achieves an approximation of the quantization process during training that is fully 

differentiable, thereby facilitating more nuanced adjustments to both the weights and quantization bit-depth.

3.2. Knowledge Distillation

Knowledge distillation techniques, such as soft and hard distillation, facilitate the transfer of knowl- edge 

from a complex ’ teacher’  model to a simpler ’ student’  model. Soft distillation focuses on minimizing the 

Kullback-Leibler (KL) divergence between the softened logits (or outputs) of both the teacher and student 

models. This is formally captured by the distillation objective:

Lglobal = (1 - λ) LCE (ψ (Zs)  y) + λτ2KL               φ
Zs

τ
φ

Zt

τ
 (4)

where LCE denotes the cross-entropy loss, ψ represents the softmax function, Zt and Zs are the logits from the 

teacher and student models, respectively, τ is the temperature parameter enhancing softness of distributions, and 
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λ balances the contributions of the KL divergence and the cross-entropy loss. Conversely, hard distillation uses 

the teacher’s predictions as definitive labels for training the student, simplifying the process by directly 

comparing the student’s predictions against these labels:

LglobalhardDistill =
1
2

 LCE (φ (Zs)  y) + 1
2

 LCE (φ (Zs)  yt)  (5)

where yt = argmaxcZt(c) represents the hard label decision by the teacher model.

The DeiT [27] method introduces a novel approach specific to Transformers, incorporating a ’ distilla- tion 

token’  into the architecture that functions analogously to the class token but focuses on mimicking

the teacher’s predictions. This mechanism allows for a direct interaction between the distillation token and 

other components through the self-attention layers, demonstrating superior performance in distillation. Our 

experimental setup involves applying the DeiT framework for knowledge distillation on the CIFAR dataset, 

adjusting for computational resource constraints.

3.3. Pruning

Pruning in Vision Transformers focuses primarily on reducing the model’s complexity by decreasing the 

number of parameters, specifically by adjusting the dimensions of weight kernels between hidden layers. This 

objective can be formalized as:

min α, β

                                            s.t.∑
k

loss(I k
βW

(k)
α,β I (k + 1)

α )- loss(I (k)
b W (k)

a,b I (k + 1)
a                                      (6)

where a, b represent the original dimensions of W (k), and α, β are the reduced dimensions post- pruning. 

The goal is to ensure the incremental loss incurred from this reduction remains below a predefined threshold δ, 

preserving the integrity of the model for subsequent tasks. Determining which dimensions to prune involves the 

use of importance scores, a concept learned either during pre-training or fine-tuning. Zhu et al. [28] and Yang et 

al. [29] derive these scores from the gradient magnitude of each weight, proposing the integration of a "soft 

gate" layer post-pruning which hardens to zero-out less critical dimensions during inference:

                                           SB(W ) = (∑bÎ B

¶s
¶ωb

ωb) 2

                                 (7)

Alternatively, Yu et al. [30] employ KL divergence to calculate importance scores, focusing on the 

divergence between model performances with and without specific modules across a dataset Ω . This method 

facilitates both within-layer and across-module pruning:

                                                                 SB(W ) = ∑
iÎΩ

DKL( )pi||qi                                                           (8)

where qi corresponds to the loss with the full model, and pi to the loss sans the pruned weights. Recent 

innovations have introduced even more nuanced importance scoring systems. Tang et al. [35] devised a score 

reflecting the theoretical impact of each patch on the final error, enhancing patch slimming efficiency. Rao et al. 

[36] combined local and global features for a more holistic assessment of token significance. Similarly, Yi et al. 

[37] synthesized various scores into a unified loss function, further refining the pruning process.

3.4. Low-rank Approximation

In Vision Transformers (ViTs), as shown in Figure 2, each self-attention block initially projects an input 

sequence X using weights WQ, WK, and WV to obtain feature representations Q = WQX, K = WKX, and V = 

WVX. The self-attention mechanism, computed as soft(QK T / dq )V, introduces computational and spatial 

complexities of O(n2), where n is the sequence length [21].

Given the formal proof of self-attention’s low-rank nature [23], leveraging this property for low-rank 

approximation emerges as a strategic choice to enhance computational efficiency. Such approxi- mations aim to 

preserve accuracy while significantly reducing both time and space complexity to approximately O(n), even 

when integrating with pre-existing or newly trained models [17,21,20].

Notably, low-rank approximation does not inherently reduce the model size, as the original weights WQ, 
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WK, WV are retained. However, it does offer substantial reductions in computational time and memory usage, 

particularly during fine-tuning or validation phases for pre-trained models. This is because the approximation 

calculations are performed subsequent to input reception. Various methodologies for low-rank approximation 

exist, including Nyström-based approaches like Nyströmformer [21] and SOFT [20], which linearize self-

attention through the Nyström method. Alternative linearization techniques, such as Performer [22] and 

Linformer [23], along with strategies integrating both low-rank and sparse attention mechanisms [17], further 

enhance approximation accuracy.

(a) Soft-gate based model proposed by Zhu et. al. [28] (b) Skip-dimension model proposed by Yu et. al. [30]

Figure 2. Different pruning models.

Our experimental focus is on the Nyströmformer-based ViT, adapting the softmax attention matrix 

calculation to utilize the Nyström method across all self-attention blocks. This allows for the use of pre-trained 

Vanilla ViT weights, facilitating direct comparisons in performance. The Nyströmformer technique employs 

landmark points for an efficient approximation, circumventing the need for full QKT calculations. We evaluate 

the efficacy of this approach with landmark counts (m) set at 24, 32, and 64, assessing its impact on model 

performance.

4. Experiments

This section delineates a thorough comparative analysis of various model compression techniques applied to 

Vision Transformers, including quantization, knowledge distillation, pruning, and low-rank approximation. 

Additionally, we investigate the synergistic potential of combining these methods to ascertain enhancements in 

performance metrics.

4.1. Experimental Settings

The experimental framework is established on a Tesla V100-SXM2 16GB GPU, with PyTorch serving as the 

primary platform for code implementation 1. The scope of our dataset utilization is confined to CIFAR-10 and 

CIFAR-100, attributed to computational resource constraints. Our primary metrics of interest include model size 

and inference speed, acknowledging the inherent trade-off between accuracy and these efficiency parameters. 

An optimal compression technique is thus characterized by minimal impact on accuracy coupled with 

substantial reductions in model size and enhancements in inference speed. Results of the comparative analysis 

across CIFAR-10 and CIFAR-100 datasets are systematically presented in Table 1 and Table 2 (1 It is pertinent 

to note that PyTorch’s current support for quantization is limited to CPU-based operations, necessitating CPU-

based inference speed tests for certain methodologies).

4.2. Comparison of Different Model Compression Methods

In assessing the impact of model compression on Model Size, we find that quantization and pruning 
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strategies offer substantial size reductions with minimal accuracy compromise. Notably, quantization 

techniques, particularly Dynamic Quantization 2, have demonstrated superior efficacy, reducing model size to 

25 (2 Dynamic Quantization was implemented using the PyTorch Quantization API:https://pytorch.org/tutorials/

advanced/dynamic_quantization_tutorial.html).

Contrarily, weight pruning, particularly with simplistic importance scoring, does not facilitate an optimal 

balance between model size and accuracy. A pruning rate of 0.1 (indicating 10% of parameters pruned) led to a 

significant accuracy reduction in both CIFAR-10 and CIFAR-100 datasets compared to the unpruned ViT. 

Further investigation, as depicted in Figure 3, reveals that a majority of parameters are deemed critically 

important (scores above 0.99), suggesting inherent limitations in simple form importance scoring for weight 

pruning. Enhancements could stem from the integration of more sophisticated importance scores [30] or 

adopting strategies like input patch reduction or slimming, as opposed to direct weight pruning [36,35].

For Inference Speed, a spectrum of enhancements is observed across different model compression strategies, 

with methods centered around knowledge distillation particularly standing out for their efficiency gains. 

Table 1.　Evaluation results on CIFAR-10. The Speed values are iterations per second.

Model.

Vanilla ViT [14]

Dynamic Quantization

FQ-ViT [32]

DIFFQ with LSQ [33]

DIFFQ with diffq [34]

DeiT base [27]

DeiT tiny [27]

ViT-Pruning(r=0.1) [28]

ViT-Pruning(r=0.2) [28]

ViT-Nyströmformer(m=
24) [21]

ViT-Nyströmformer(m=
32) [21]

ViT-Nyströmformer(m=
64) [21]

DeiT base + Dynamic
Quantization

Method.

-

Quantization (PTQ)

Quantization (PTQ)

Quantization (QAT)

Quantization (QAT)

Knowledge Distillation

Knowledge Distillation

Pruning

Pruning

Low-rank 
Approximation

Low-rank 
Approximation

Low-rank 
Approximation

Knowledge Distillation
+ PTQ

Accuracy GPU Speed CPU Speed Size

(MB)

98.94  4.48

98.73  -

97.31  -

93.37  2.10

60.29  12.20

98.47  7.04

95.43  16.78

88.36  4.86

80.56  5.54

65.91  4.67

75.94  4.57

91.70  4.38

96.75  -

0.050

0.062

-

-

-

0.096

-

-

-

-

-

-

0.117

327

84

-

41

2

327

21

301

254

327

327

327

84

Figure 3.　Number of parameters vs importance score. Blue: CIFAR-10. Red: CIFAR-100.
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Notably, the DeiT base model, despite not undergoing significant size reduction, achieves an inference speed 

nearly double that of the standard Vision Transformer (ViT), all while preserving accuracy to a remarkable 

degree. An intriguing case is observed with the DeiT tiny configuration on the CIFAR-10 dataset, where it 

attains 95.43% accuracy—a figure closely aligned with the Vanilla ViT—yet delivers a quadruple increase in 

speed and is compressed to merely 6% of the original model’s size.

Furthermore, the application of Nyströmformer-based techniques to ViT illustrates a nuanced balance 

between accuracy and speed, particularly influenced by the selection of the number of landmarks (m). Opting for 

a larger m value enhances the precision of approximations at the expense of processing velocity. Additionally, 

Dynamic Quantization contributes to inference speed improvements in the range of 10-20% on CPU platforms, 

underscoring the practical benefits of model compression beyond just reductions in size.

4.3. Exploration of Mixed Methods

The examination of individual model compression techniques suggests that a hybrid approach, leveraging 

the strengths of both quantization and knowledge distillation, warrants further investigation. Particularly, when a 

slight decrease in accuracy is acceptable, such a combined strategy appears promising for optimizing both model 

compactness and processing efficiency. As demonstrated in Tables 1 and 2, employing a composite method—

integrating the DeiT base model with Dynamic Quantization—significantly enhances inference speed, achieving 

more than a twofold increase, while concurrently reducing the model’s size to one-fourth of its original 

dimensions. This is achieved with a manageable trade-off in accuracy, highlighting the potential of mixed 

approaches in striking a balanced compromise between speed, size, and performance.

5. Conclusion

This study has been dedicated to an empirical investigation of model compression techniques aimed at 

Table 2.　Evaluation results on CIFAR-100. The Speed values are iterations per second.

Model

Vanilla ViT [14]

Dynamic Quantization

FQ-ViT [32]

DIFFQ with LSQ [33]

DIFFQ with diffq [34]

DeiT base [27]

DeiT tiny [27]

ViT-Pruning(r=0.1) [28]

ViT-Pruning(r=0.2) [28]

ViT-Nyströmformer(m=
24) [21]

ViT-Nyströmformer(m=
32) [21]

ViT-Nyströmformer(m=
64) [21]

DeiT base + Dynamic
Quantization

Method

-

Quantization (PTQ)

Quantization (PTQ)

Quantization (QAT)

Quantization (QAT)

Knowledge Distillation

Knowledge Distillation

Pruning

Pruning

Low-rank 
Approximation

Low-rank 
Approximation

Low-rank 
Approximation

Knowledge Distillation
+ PTQ

Accuracy GPU Speed CPU Speed Size 
(MB)

92.87  4.34

90.87  -

84.87  -

76.08  2.10

41.02  12.00

87.35  6.97

75.90  16.16

74.46  4.69

64.27  5.19

38.51  4.77

50.31  4.65

74.01  4.46

82.61  -

0.093

0.122

-

-

-

0.149

-

-

-

-

-

-

0.196

327

84

-

41

2

327

21

302

272

327

327

327

84

--8



Feiyang C, et al. J. Inf. Technol. Policy. 2024

enhancing the efficiency and deployment viability of Vision Transformers (ViTs). We meticu- lously examined 

four predominant compression methods—quantization, low-rank approximation, knowledge distillation, and 

pruning—complemented by a review of cutting-edge research in the field. Through comparative analyses 

conducted on the CIFAR-10 and CIFAR-100 datasets, our findings underscore the efficacy of post-training 

quantization and knowledge distillation as standout strategies. These methods not only significantly reduce 

model size but also expedite inference times, all while maintaining acceptable levels of performance 

degradation. Further exploration into the synergistic potential of combining quantization and knowledge 

distillation has revealed a compelling avenue for optimization. Particularly evident within the CIFAR-10 dataset, 

this hybrid approach markedly accelerated inference speeds—surpassing baseline speeds by more than a factor 

of two—while concurrently diminishing model size to merely a quarter of its initial footprint. The insights 

garnered from this comprehensive examination advocate for a holistic, multi-faceted approach to model 

compression. Integrating diverse compression methodologies holds substantial promise for refining the 

operational efficiency of Vision Transformers, heralding a robust direction for future research in this domain. 

Moreover, this paper can be further investigated in the fields of transportation engineering [38 – 42], machine 

learning [43–46], biological engineering [47–51], etc.
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