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Abstract: With the rapid development of information technology, network security issues have become 

increasingly prominent. In particular, data security intrusions pose serious threats to the data privacy and system 

security of enterprises and individuals. Traditional intrusion detection systems often exhibit low detection 

accuracy and high false alarm rates when faced with complex and dynamic network environments and diverse 

attack methods. Therefore, this paper proposes a data security intrusion detection system based on deep learning, 

which integrates the Mamba model and ECANet model and employs an end-to-end learning approach for 

training and optimization. First, the Mamba model is introduced for preliminary data feature extraction, whose 

efficient feature representation capabilities provide a solid foundation for the subsequent detection process. 

Then, by integrating the ECANet model, feature selection is further optimized through the attention mechanism, 

enhancing the model’s focus on important features. Finally, an end-to-end learning approach is adopted to train 

and optimize the entire system, ensuring excellent performance and robustness in practical applications. 

Experimental results show that the proposed intrusion detection system demonstrates higher detection accuracy 

on multiple test datasets, improving by approximately 5% compared to traditional methods, providing a new and 

effective solution for data security.

Keywords: data security; anomaly detection; Mamba model; ECANet model; end-to-end learning; feature 

extraction

1. Introduction

In the realm of cybersecurity, intrusion detection systems (IDS) are crucial for protecting networks from 

malicious attacks, enhancing overall system security, reducing the risk of data breaches, and ensuring data 

integrity. With the continuous advancement of information technology and the increasing complexity of network 

environments, the demand for automated and intelligent cybersecurity protection systems has become more 

urgent. These systems not only help to reduce the likelihood of potential threats but also demonstrate superior 

performance in enhancing network defense capabilities and handling complex network environments.

Deep learning-based models, such as Convolutional Neural Networks (CNNs) [1] and Long Short-Term 

Memory Networks (LSTMs) [2], have achieved remarkable results in intrusion detection. CNNs utilize their 
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weight-sharing characteristics to efficiently extract important features from network data, thereby accelerating 

processing speed, while LSTMs maintain long-term temporal relationships between data features. However, 

these models still underperform when dealing with limited or highly imbalanced intrusion samples. Additionally, 

these models typically rely on large amounts of labeled data to achieve high performance, which is often 

challenging to obtain in real-world cybersecurity environments. Through optimization algorithms and semi-

supervised learning, leveraging a small amount of labeled data combined with a large amount of unlabeled data 

can effectively enhance model performance in scenarios with limited data. This approach holds significant 

potential for improving intrusion detection systems [3,4]. Similarly, in finance, extreme value mixture modeling 

for tail risk estimation has shown excellent application results, a method that can also be adapted to enhance 

existing models in cybersecurity [5,6]. In multi-domain fake news detection, the use of fuzzy labeling techniques 

provides a more flexible approach to handling diverse and dynamically changing data [7].

State Space Models (SSMs) [8], known for their efficiency in handling long sequence modeling, have 

recently been applied in the field of cybersecurity. For instance, the Mamba model, by introducing a data-

dependent selection mechanism [9], significantly improves the model’s efficiency and accuracy while 

maintaining linear scalability in processing long sequences. In the field of computer vision, variants of the 

Mamba model, such as VMamba [10], combine selective scanning mechanisms (S6) [11] to handle non-causal 

two-dimensional image data, further enhancing the model’s processing capabilities. This innovative design not 

only improves detection accuracy but also significantly reduces computational costs. Moreover, the application 

of the Mamba model in multi-class unsupervised anomaly detection (MUAD) demonstrates its powerful 

modeling capability and computational efficiency, providing new solutions for intrusion detection in complex 

network environments. The unique aspect of the Jamba model lies in its integration of the Transformer [12] and 

Mamba architectures. Although the Transformer is popular in the field of language modeling, its memory and 

computational requirements are high, and it is limited by the key-value cache size when handling long contexts. 

Additionally, generating each token requires computing the entire context, resulting in slow inference speed and 

low throughput. In contrast, traditional Recurrent Neural Networks (RNNs) [13] can summarize arbitrarily long 

contexts in a single hidden state without these limitations, but they are expensive to train and struggle to handle 

long-distance relationships.

Despite the significant advancements of these models in many areas, some unresolved issues persist in 

specific cybersecurity scenarios. To address these challenges, this paper proposes an end-to-end data security 

intrusion detection system that combines the Mamba model with the ECANet model, aiming to improve 

detection accuracy and efficiency. First, the Mamba model, through its selective state space model (SSMs) 

approach, addresses the weaknesses of traditional discrete modalities and designs hardware-friendly parallel 

algorithms, achieving efficient inference and linear scalability, suitable for analyzing large and complex log data 

in intrusion detection systems. Second, to further enhance the model’s detection performance, this paper 

introduces the Efficient Channel Attention (ECA) module. The ECA module effectively reduces model 

complexity while improving the model’s sensitivity and accuracy to abnormal behavior by avoiding 

dimensionality reduction and adopting a local cross-channel interaction strategy. Applying federated learning 

algorithms on distributed graphs, while considering various heterogeneities, further enhances data privacy 

protection and model generalization [14]. Additionally, research has shown that integrating BERT-augmented 

prompt engineering methods in multi-class news classification can significantly enhance model performance 

when handling large-scale datasets [15]. By combining implicit contrastive learning with unsupervised domain 

adaptation techniques, the model’s diversity and discriminability on cross-domain data are optimized [16]. 

Finally, through an end-to-end learning approach, this paper designs a complete intrusion detection framework 

that automatically performs data preprocessing, feature extraction, anomaly detection, and classification tasks, 

achieving efficient detection and classification of various types of attack behaviors.

The organization structure of this article is as follows: This section introduces the importance of 

cybersecurity and intrusion detection systems (IDS), provides an overview of the limitations and challenges of 

current intrusion detection methods, and presents the motivation and objectives of this study. The second section 

reviews recent research in the field of intrusion detection, covering both traditional methods and deep learning-
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based approaches, with a focus on the application and advantages and disadvantages of various models in 

different scenarios. The third section provides a detailed description of the proposed end-to-end data security 

intrusion detection system based on deep learning, including the design and integration of the Mamba model and 

ECANet model, as well as the application of end-to-end learning methods. The fourth section describes the 

experimental setup and procedures, including the selection of datasets, configuration of the experimental 

environment, and definition of evaluation metrics, and validates the effectiveness and superiority of the 

proposed system through comparisons with existing methods. The fifth section summarizes the main 

contributions and experimental findings of this paper, discusses the limitations of the research, and outlines 

future research directions.

The main contributions of this paper are as follows:

1. The application of the Mamba model to the field of data security intrusion detection. This model, through 

its Selective State Space Model (SSM) approach, effectively addresses the weaknesses of traditional discrete 

modalities and designs hardware-friendly parallel algorithms, achieving efficient inference and linear scalability, 

suitable for analyzing large and complex log data in intrusion detection systems.

2. The introduction of the Efficient Channel Attention (ECA) module. By avoiding dimensionality reduction 

and adopting a local cross-channel interaction strategy, this module effectively reduces the complexity of the 

model while improving its sensitivity and accuracy in detecting abnormal behavior. This combination enhances 

the model’s robustness and precision in handling diverse and complex attacks. Additionally, integrating 

attention mechanism-based DCGAN with autoencoders aids in handling noisy OCR classification tasks, further 

enhancing the overall model performance [17,18].

3. The design of a complete end-to-end intrusion detection framework capable of automatically performing 

data preprocessing, feature extraction, anomaly detection, and classification tasks. The end-to-end learning 

approach ensures that the optimization process of the entire system is global, improving the overall performance 

and robustness of the system. This multi-model fusion strategy demonstrates excellent performance in malware 

detection across diverse data distributions, with domain adaptation further enhancing the model’s cross-

distribution detection capabilities [19,20].

2. Related Work

In recent years, intrusion detection systems (IDS) in cybersecurity have played a crucial role in addressing 

increasingly complex network threats. Traditional IDS methods are mainly divided into two categories: 

signature-based intrusion detection systems (SIDS) and anomaly-based intrusion detection systems (AIDS) [21]. 

SIDS detect intrusions by matching the signatures of known attacks, offering high detection accuracy and low 

false alarm rates, but are limited in effectiveness against unknown attacks. AIDS, on the other hand, detect 

abnormal activities that deviate from expected behavior by constructing models of normal behavior, effectively 

identifying unknown attacks but potentially generating higher false alarm rates.

In industrial systems, the ultrafast structural damage identification using optimized extreme learning 

machines and reliability assessment with active learning-based surrogate modeling show the significant potential 

of deep learning and optimization methods for enhancing complex system performance [22,23]. With the rapid 

development of machine learning and deep learning technologies, many researchers have applied these 

technologies to intrusion detection systems to improve their detection performance and ability to handle 

complex attacks. For example, Çavuşoğlu proposed a new hybrid method that combines various machine 

learning techniques to enhance the accuracy and efficiency of intrusion detection [24]. However, this method 

still faces challenges when dealing with large-scale high-dimensional data. Ferrag et al. reviewed various deep 

learning-based intrusion detection methods, finding that these methods perform well in handling complex 

network traffic and evolving attack techniques, but are highly dependent on training datasets and may face 

issues with frequent model updates in practical applications [25]. Longlong Li et al. proposed an end-to-end 

intrusion detection framework based on contrastive learning, employing hierarchical convolutional neural 

networks (CNNs) and gated recurrent units (GRUs) to automatically extract spatiotemporal features from raw 

network traffic data [26]. This method achieved a detection accuracy of 99.9% for known attacks and a weighted 
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recall rate of 95% for unknown attacks, demonstrating excellent detection capabilities.

In addition to the aforementioned studies, Yang and Wang improved the application of convolutional neural 

networks (CNNs) for wireless network intrusion detection, significantly enhancing detection accuracy and 

efficiency [27]. Zhao et al. proposed a new method using large language models (LLMs) to generate key points 

in qualitative data analysis. This method effectively extracts critical features from large datasets, enhancing the 

accuracy and efficiency of anomaly detection, thereby optimizing the overall performance of intrusion detection 

systems [28]. Jiang et al. proposed an energy-efficient multi-constrained routing algorithm in smart city 

applications, improving network efficiency through load balancing. Although this method mainly targets routing 

optimization, its approach is insightful for resource management in intrusion detection systems [29]. Similarly, 

joint operation planning using Lagrangian relaxation to optimize vehicle routing and scheduling in semi-

autonomous truck platooning enhances overall system efficiency and cost-effectiveness. This method 

demonstrates potential for effective resource management and task scheduling in complex environments, 

providing valuable insights for improving resource management in intrusion detection systems [30,31]. 

Moreover, Dong and Wang compared traditional methods and deep learning methods in network intrusion 

detection, finding that deep learning methods perform better in handling complex network traffic and unknown 

attacks [32]. Another study indicates that using prototypical contrastive convolutional network techniques can 

significantly enhance intrusion detection performance in small sample scenarios [33]. Sarvari et al., proposed an 

efficient anomaly intrusion detection method by combining feature selection and evolutionary neural networks, 

significantly improving detection accuracy [34]. Tian et al. proposed an industrial network intrusion detection 

algorithm based on a multi-feature data clustering optimization model, demonstrating the potential of data 

fusion technology in enhancing detection performance [35]. Additionally, star map recognition and matching 

based on the deep triangle model uses efficient feature extraction and pattern matching to quickly identify 

anomalies, enhancing the accuracy and efficiency of intrusion detection for complex network attacks [36]. 

However, these methods still face challenges such as high dependency on datasets and frequent model updates, 

particularly in real-world applications where obtaining representative high-quality datasets remains a significant 

challenge.

In the study of deep learning-based end-to-end data security intrusion detection systems, the Mamba model, 

as a novel selective state space model (SSM), has shown significant advantages and potential. Albert Gu and Tri 

Dao first proposed the Mamba model to address the computational efficiency issues of the Transformer 

architecture when processing long sequences [37]. The Mamba model sets the SSM parameters as functions of 

the input, allowing the model to selectively propagate or forget information based on the current input, 

achieving linear time complexity expansion while maintaining context-relevant reasoning capabilities. Based on 

the Mamba architecture, researchers developed the Vision Mamba (Vim) model for efficient visual 

representation learning [38]. The Vim model, through bidirectional state space modeling and positional 

embedding techniques, performs excellently in image classification, object detection, and semantic segmentation 

tasks, significantly improving computational and memory efficiency. In the ImageNet classification task, the 

Vim model outperformed many existing visual Transformer models and demonstrated outstanding efficiency in 

high-resolution image processing. Additionally, Gu et al. further extended the Mamba model by introducing the 

Selective State Space model (S6), enhancing the selectivity of information processing, resulting in superior 

performance in handling long-sequence data [37]. This improvement has made the Mamba model more stable 

and efficient in multimodal learning tasks. However, the Mamba model still has some limitations. For example, 

the selective information processing mechanism of the Mamba model in handling discrete modalities (such as 

language) may lead to adaptability issues in specific application scenarios. Despite its hardware-friendly parallel 

algorithms enhancing computational efficiency, further optimization may be needed to avoid potential 

computational bottlenecks when processing extremely long sequence data.

Channel attention mechanisms have shown great potential in enhancing the performance of deep 

convolutional neural networks (CNNs). However, most existing methods focus on developing more complex 

attention modules to pursue better performance, inevitably increasing model complexity. To address the trade-

off between performance and complexity, Wang et al. proposed an Efficient Channel Attention (ECA) module 
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[39]. The ECA module effectively reduces model complexity while significantly improving performance by 

avoiding dimensionality reduction and adopting a local cross-channel interaction strategy. For instance, 

experiments on ResNet-50 demonstrated that the ECA module could achieve over a 2% increase in Top-1 

accuracy with minimal additional parameters and computational load. Besides the work of Wang et al., Huynh-

The et al. proposed a high-performance convolutional network (RF-UAVNET) based on the ECA attention 

mechanism for RF signal-based UAV monitoring systems [40]. Their method integrated the ECA module to 

improve accuracy and efficiency in UAV detection and identification tasks. However, while their method 

performed well in specific applications, further validation of the model’s generalization ability in handling other 

types of complex data is necessary. Huang et al. explored the application of the ECA attention mechanism in 

multi-channel 1D convolutional neural networks for UAV detection and identification using RF signals [41]. 

Their method highlighted the advantages of the ECA module in processing time-series data by reducing 

redundant computations to enhance real-time performance. However, the study also noted that the ECA module 

still faces challenges when dealing with high-noise and complex background data. Additionally, Chen et al. 

proposed a deep learning method combining the ECA module for UAV detection and classification [42]. Their 

method leveraged the ECA attention mechanism to enhance feature extraction capability in complex scenarios, 

effectively improving detection and classification accuracy. Nonetheless, further optimization is needed to 

address computational efficiency and resource consumption when handling larger datasets. ECA-Net, through 

its innovative design, strikes a balance between complexity and performance, providing new insights for 

performance enhancement in deep learning models.

3. Method

Figure 1 shows the overall algorithm architecture of the data security intrusion detection system used in this 

paper. This model first performs a linear projection on the input data and transforms it into both the frequency 

and time domains to capture multi-dimensional features. Subsequently, it utilizes ECANet for feature extraction 

and further optimizes the extracted features through a Selective State Space Model. The optimized features are 

then combined via linear projection and processed through the subsequent Add & Norm and Feed-forward 

mechanisms to ensure stable signal processing and feature extraction, ultimately outputting the detection results.

Figure 1.　Overall algorithm architecture.
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3.1. Mamba Architecture

Mamba is a Selective Structured State Space Model (S4) designed to handle long-sequence data. By 

introducing a selection mechanism, it overcomes the limitations of traditional State Space Models (SSMs) in 

contextual reasoning capability. The Mamba model effectively extracts complex data features, providing a solid 

foundation for subsequent deep learning processing. The architecture diagram of Mamba is shown in Figure 2.

The core idea of SSM is to connect the input and output sequences through latent states. The classic form of 

SSM is as follows:

h' (t )  =  Ah (t )  +  Bx (t ) (1)

y (t )  =  Ch (t ) (2)

where AÎ RN ´N BÎ RN ´ 1 CÎ R1 ´N are the model parameters. When processing discrete input sequences, SSM 

discretizes these parameters using the zero-order hold (ZOH) method.

The discretized parameters are expressed as:

A = exp(DA) (3)

B = (DA)-1 (exp(DA)- I)× DB (4)

Then, the discretized SSM is represented as:

ht = Aht - 1 + Bxt  (5)

yt =Cht  (6)

The recursive computation process of SSM can also be expressed as a convolution operation:

K = (CBCABCAL - 1 B) (7)

y = x*K (8)

where L is the length of the input sequence and KÎ RL is the SSM convolution kernel.

The key improvement of the Mamba model lies in its selection mechanism, which achieves context-related 

interaction by making the parameters of the SSM dependent on the input sequence. Specifically, the parameters 

B C D of the selective SSM are expressed as functions of the input sequence x:

Figure 2.　Structure diagram of Mamba.
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BCD = Linear(x) (9)

3.2. ECANet Architecture

In this study, we adopt ECANet (Efficient Channel Attention Network) as one of the base models to enhance 

the feature selection capability of the data security intrusion detection system. ECANet, by introducing an 

efficient channel attention mechanism, improves model performance while reducing computational complexity. 

The channel attention mechanism aims to weight the channels of the input feature map, enabling the network to 

focus more on important features. The architecture diagram of ECANet is shown in Figure 3

The core idea of ECANet is to use one-dimensional convolution (1D Convolution) instead of fully 

connected layers to capture local cross-channel interactions. First, the input feature map XÎ RH ´W ´C is globally 

average-pooled to obtain the global feature vector zÎ RC along the channel dimension.

z = Fsq (X)=
1

H ´W∑i = 1

H∑
j = 1

W

X (ij) (10)

Then, a one-dimensional convolution kernel of size k is applied to the global feature vector z, generating the 

channel attention weights sÎ RC. Here, k is an adjustable parameter used to control the size of the convolution 

kernel.

s = Fex (z)= σ(Conv1D(zk)) (11)

Finally, the generated channel attention weights s are multiplied with the original feature map X, resulting in 

the re-calibrated feature map YÎ RH ´W ´C.

Y = Fscale (Xs)= s ×X (12)

where σ is the sigmoid activation function, and Conv1D ( zk ) denotes convolution operation with a one-

dimensional kernel of size k applied to the feature vector z.

3.3. End-to-End Learning

End-to-end learning refers to integrating the entire learning process into a single model, optimizing directly 

from the raw input to the final output. Compared to traditional staged learning methods, end-to-end learning can 

better capture the global features of the data, reduce information loss from intermediate steps, and enhance the 

overall performance and robustness of the model.

We use the cross-entropy loss function to measure the discrepancy between the model’s predictions and the 

true labels. The formula for the cross-entropy loss function is as follows:

L =-
1
N∑i = 1

N

[ ]yi log( ŷi )+ (1 - yi )log(1 - ŷi )  (13)

where N is the number of samples, yi is the true label of the i-th sample, and yi is the predicted probability from 

the model.

We use the Adam optimizer to update the model parameters. The Adam optimizer can efficiently process 

large-scale data and high-dimensional parameter space through adaptive learning rate adjustment. Its update 

formula is as follows:

Figure 3.　Structure diagram of ECANet.
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mt = β1mt - 1 + (1 - β1 )gt (14)

vt = β2vt - 1 + (1 - β2 )g 2
t (15)

m̂t =
mt

1 - β t
1

(16)

v̂t =
vt

1 - β t
2

(17)

θ t = θ t - 1 - α
m̂t

v̂t + ϵ
(18)

Among them, mt and vt are the first-order and second-order moment estimates, respectively, β1 and β2 are the 

decay rates, α is the learning rate, gt is the gradient, and θ t is the model parameter.

We divide the training data into training set and validation set, and continuously adjust the model parameters 

through iterative optimization until the loss function converges. During the training process, the Early Stopping 

method is used to prevent overfitting.

The pseudo code of this model is as follows:

Algorithm 1 Training Process for Mamba-ECANet

NSL-KDD Dataset, UNSW-NB15 Dataset, CICIDS 2017 Dataset, AWID Dataset Trained Mamba-ECANet Model, Performance Metrics: 

Accuracy, Precision, Recall, AUC Initialize parameters θMamba, θECANet, learning rate α, batch size B, epochs E

Load datasets: DNSL -KDD, DUNSW -NB15, DCICIDS2017, DAWID

for each dataset D in {DNSL -KDD, DUNSW -NB15, DCICIDS2017, }DAWID  do

  Split D into training set Dtrain and test set Dtest

  for epoch e in 1 to E do

   for batch b in Dtrain do

    Extract features Xb and labels yb from batch b

     hMamba ¬MambaModel ( Xb θMamba )
hECANet ¬ ECANetModel (hMamba θECANet )
ypred ¬ Softmax (hECANet )
    Compute loss L ( ypred yb ) using cross-entropy:

( ) ( )

pred pred

1

1
( , ) log( )

B
i i

b b

i

y y y y
B =

= −   

    Compute gradients ÑθMamba
LÑθECANet

L
    Update parameters:

MambaMamba Mamba    −   

ECANetECANet ECANet    −   

   end

 end

 Evaluate model on D test

 for each sample( xy) in Dtest do

hMamba ¬MambaModel ( xθMamba )
hECANet ¬ ECANetModel (hMamba θECANet )
ypred ¬ Softmax (hECANet )
Collect predictions and true labels

 end

Compute evaluation metrics:

Accuracy =
TP +TN

TP +TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

AUC = ∫
0

1

TPR ( )FPR  d(FPR)

Store results for dataset D

end

Compare metrics across datasets and finalize model
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4. Experiment

The experimental flow chart of this paper is shown in Figure 4.

4.1. Experimental Environment

The experiments were conducted on a high-performance computing platform to ensure the efficiency of data 

processing and model training. The hardware environment includes: Intel Core i9-10900K processor with 10 

cores and 20 threads; NVIDIA GeForce RTX 3090 graphics processor with 24 GB video memory; 256 GB 

DDR4 memory; and 2 TB NVMe SSD storage. The software environment includes: Ubuntu 20.04 LTS 

operating system; TensorFlow 2.4 and PyTorch 1.7.1 deep learning frameworks for model building and training; 

NumPy 1.19.4 and Pandas 1.1.4 data processing libraries for data preprocessing and analysis; Matplotlib 3.3.3 

and Seaborn 0.11.0 visualization tools for visualization and analysis of results.

4.2. Experimental Data

● NSL-KDD Dataset

The NSL-KDD dataset is an improved version of the KDD Cup 1999 dataset, designed to address the 

redundancy issues in the original dataset. It contains 125,973 training records and 22,544 testing records. The 

records in the NSL-KDD dataset are categorized into normal traffic and various types of attack traffic, including 

DoS (Denial of Service), Probe, U2R (User to Root), and R2L (Remote to Local). The NSL-KDD dataset is 

widely used for research and evaluation of network intrusion detection systems because it provides a 

standardized testing platform and has a relatively small number of records, making it suitable for preliminary 

validation and comparative experiments.

● UNSW-NB15 Dataset

The UNSW-NB15 dataset, released by the University of New South Wales (UNSW), contains real network 

traffic and various attack traffic. This dataset includes 100,000 training records and 82,332 testing records. It 

covers 9 types of attacks, including Analysis, Backdoor, DoS (Denial of Service), Exploits, Fuzzers, Malware, 

Shellcode, Worms, and Generic. The diversity and complexity of the UNSW-NB15 dataset make it an important 

tool for evaluating the effectiveness of intrusion detection systems in real-world network environments.

● CICIDS 2017 Dataset

The CICIDS 2017 dataset, released by the Canadian Institute for Cybersecurity (CIC), contains network 

traffic data generated in 2017. This dataset records various types of attacks, including DDoS (Distributed Denial 

of Service), Brute Force, XSS (Cross-Site Scripting), SQL Injection, and more. The CICIDS 2017 dataset 

encompasses a wide range of network activities from normal traffic to complex attack scenarios, making it a 

valuable resource for studying and evaluating the performance of intrusion detection systems. Its detailed traffic 

Figure 4.　Experimental flowchart.
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records and diverse attack types aid in the application research of deep learning models in real-world scenarios.

● AWID Dataset

The AWID (Aegean Wi-Fi Intrusion Dataset) dataset focuses on intrusion detection in wireless networks and 

is released by TU Wien (Vienna University of Technology). This dataset includes normal traffic and various 

types of wireless attack traffic, primarily used for researching wireless network security and intrusion detection. 

The AWID dataset is divided into sub-datasets, including AWID-ATK-R and AWID-CLS, where AWID-ATK-R 

is mainly used for identifying attack types, and AWID-CLS is used for classifying attacks and normal traffic. 

The dataset’s focus on the wireless network environment makes it suitable for evaluating the performance of 

wireless network intrusion detection systems.

4.3. Evaluation Metrics

In evaluating the proposed deep learning-based data security intrusion detection system, the following four 

main metrics are used to measure the performance of the model: Accuracy, Precision, Recall, and AUC. These 

metrics help comprehensively assess the detection capability and robustness of the system, ensuring it can 

effectively detect and defend against data security intrusions in practical applications.

● Accuracy

Accuracy is an intuitive metric that measures the overall prediction performance of the model. It represents 

the proportion of correctly predicted samples out of the total number of samples. For an intrusion detection 

system, high accuracy means the model can correctly classify normal traffic and attack traffic in most cases.

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

where TP represents True Positives, the correctly detected attack traffic; TN represents True Negatives, the 

correctly detected normal traffic; FP represents False Positives, the normal traffic mistakenly detected as attack 

traffic; and FN represents False Negatives, the attack traffic mistakenly detected as normal traffic.

● Precision:

Precision measures the proportion of actual attack traffic out of all samples predicted as attack traffic. High 

precision indicates that the model rarely misclassifies normal traffic as attack traffic, which is crucial for 

reducing interference with normal traffic.

Precision =
TP

TP + FP
(20)

● Recall:

Recall measures the proportion of correctly detected attack traffic out of all actual attack traffic samples. 

High recall means the model can effectively detect most attack traffic, reducing the risk of missed attacks.

Recall =
TP

TP + FN
(21)

● AUC:

In a data security intrusion detection system, AUC helps evaluate the system’s detection performance for 

intrusion and non-intrusion behavior at different thresholds. By calculating the AUC, we can quantify the 

model’s overall classification performance, ensuring the system has good detection capability and robustness in 

practical applications. The higher the AUC value, the better the classification performance in detecting intrusion 

and non-intrusion behavior.

AUC = ∫
0

1

TPR(FPR)d(FPR) (22)

Here, TPR stands for True Positive Rate, and FPR stands for False Positive Rate.

4.4. Experimental Comparison and Analysis

To validate the effectiveness of the proposed deep learning-based data security intrusion detection system, 

we conducted extensive experimental comparisons and analyses. The experiments utilized multiple public 

network security datasets, including NSL-KDD, UNSW-NB15, CICIDS 2017, and AWID, and were compared 

with traditional intrusion detection systems.
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Table 1 shows the performance comparison of different models on the NSL-KDD and UNSW-NB15 

datasets. It is evident that the proposed intrusion detection system significantly outperforms other models across 

all evaluation metrics. On the NSL-KDD dataset, our model achieved an accuracy of 96.45%, a precision of 

97.64%, a recall of 96.14%, and an AUC of 97.64%. These results are substantially higher than those of Yang et 

al. (89.90% accuracy), Sarvari et al. (89.21% accuracy), and other comparison models. Similarly, on the UNSW-

NB15 dataset, our model demonstrated excellent performance, achieving an accuracy of 95.64%, a precision of 

97.54%, a recall of 96.73%, and an AUC of 96.76%, significantly surpassing other models. This indicates that 

the proposed system offers higher detection accuracy, lower false positive rates, and greater robustness in 

practical applications, effectively enhancing the overall performance of data security intrusion detection. Figure 

5 visualizes the comparison of various metrics on the two datasets.

Table 2 presents the performance comparison of different models on the CICIDS 2017 and AWID datasets. 

The results indicate that our proposed intrusion detection system outperforms other models across all evaluation 

metrics. On the CICIDS 2017 dataset, our model achieved an accuracy of 97.64%, a precision of 95.21%, a 

recall of 97.72%, and an AUC of 98.09%, significantly higher than Sarvari et al. Similarly, on the AWID dataset, 

our model also demonstrated excellent performance, achieving an accuracy of 96.41%, a precision of 96.37%, a 

recall of 95.34%, and an AUC of 97.54%, all of which significantly surpass other models. These results show 

that our deep learning intrusion detection system has higher detection accuracy and robustness in dealing with 

Table 1.　Comparison of indicators of various models under NSL-KDD Dataset and UNSW-NB15 
Dataset.

Model

Yang et al. [27]

Sarvari et al. [34]

Wang et al. [39]

Huynh-The et al. [40]

Huang et al. [41]

Chen et al. [42]

Ours

NSL-KDD Dataset

ACC 
(%)

89.90

89.21

90.07

89.67

92.27

92.14

96.45

P (%)

89.10

90.87

89.68

92.27

89.63

89.99

97.64

R (%)

91.34

89.68

90.84

92.20

90.92

92.66

96.14

AUC 
(%)

90.88

93.63

91.81

89.06

93.79

92.76

97.64

UNSW-NB15 Dataset

ACC 
(%)

89.66

89.63

88.21

88.30

90.06

90.94

95.64

P (%)

92.44

91.16

89.73

91.51

90.46

89.48

97.54

R (%)

89.87

90.40

89.94

91.09

90.67

92.39

96.73

AUC 
(%)

89.04

91.60

88.08

89.42

90.42

89.55

96.76

Figure 5.　Comparative visualization of each model indicator under the NSL-KDD Dataset and UNSW-NB15 
Dataset.

--11



Huitao Z, et al. J. Inf. Technol. Policy. 2024

different types of network attacks and datasets, effectively enhancing data security protection capabilities. 

Similarly, Figure 6 visualizes the comparison of various metrics on the two datasets.

Table 3 shows the training metrics of various models on four datasets, including the number of training 

epochs, inference time, and training time. The results indicate that our proposed model demonstrates superior 

training efficiency across all datasets. On the NSL-KDD and UNSW-NB15 datasets, our model requires only 

115 and 120 epochs, respectively, with inference times of 291.34 ms and 289.64 ms and training times of 302.42 

s and 310.51 s, respectively, all of which are the lowest values. On the CICIDS 2017 and AWID datasets, our 

model also performs excellently, requiring 110 and 100 epochs, respectively, with inference times of 284.64 ms 

and 271.64 ms and training times of 314.62 s and 214.53 s. This indicates that our proposed system not only 

outperforms other models in terms of performance but also shows significant advantages in training and 

inference efficiency, enabling it to quickly and effectively adapt to the needs of real-world applications. Figure 7 

visualizes the comparison of various training metrics across the four datasets.

Table 3.　Training indicators of each model on four datasets.

Yang et al. [27] 130 375.39 373.75 135 394.64 417.77

NSL-KDD Dataset

Model Epochs Inference Time (ms) Trainning Time (s)

UNSW-NB15 Dataset

Epochs Inference Time (ms) Trainning Time (s)

Table 2.　Comparison of indicators of various models under the CICIDS 2017 Dataset and AWID Dataset.

Model

Yang et al. [27]

Sarvari et al. [34]

Wang et al. [39]

Huynh-The et al. [40]

Huang et al. [41]

Chen et al. [42]

Ours

CICIDS 2017 Dataset

ACC 
(%)

91.30

93.39

93.81

92.02

91.04

93.85

97.64

P (%)

89.24

90.43

92.16

91.03

92.63

92.83

95.21

R (%)

89.29

90.39

91.97

91.67

90.56

90.44

97.72

AUC 
(%)

91.92

91.42

89.5

89.79

92.97

90.01

98.09

AWID Dataset

ACC 
(%)

91.82

89.00

90.87

91.65

92.48

93.00

96.41

P (%)

90.47

92.81

89.04

90.30

92.05

91.09

96.37

R (%)

88.74

89.47

91.21

91.70

91.56

88.32

95.34

AUC 
(%)

91.38

89.42

92.42

89.29

92.30

90.48

97.54

Figure 6.　Comparative visualization of each model indicator under the CICIDS 2017 Dataset and AWID 
Dataset.
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Sarvari et al. [34]

Wang et al. [39]

Huynh-The et al. [40]

Huang et al. [41]

Chen et al. [42]

Ours

CICIDS 2017 Dataset

Model

Yang et al. [27]

Sarvari et al. [34]

Wang et al. [39]

Huynh-The et al. [40]

Huang et al. [41]

Chen et al. [42]

Ours

140

135

125

120

135

115

Epochs

120

125

125

135

120

125

110

356.58

306.32

339.71

391.74

308.32

291.34

Inference Time (ms)

365.43

423.66

352.85

431.2

388.87

427.2

284.64

320.48

365.86

314.41

390.09

355.8

302.42

Trainning Time (s)

378.21

398.24

371.71

396.99

390.51

379.18

314.62

150

145

140

130

135

120

AWID Dataset

Epochs

125

130

130

145

120

135

100

310.42

377.05

393.35

304.43

339.3

289.64

Inference Time (ms)

319.66

320.71

361.83

322.5

371.94

300.21

271.64

355.73

393.72

333.17

412.11

405.99

310.51

Trainning Time (s)

280.18

298.8

231.54

288.83

236.26

260.27

214.53

Cont.

NSL-KDD Dataset

Model Epochs Inference Time (ms) Trainning Time (s)

UNSW-NB15 Dataset

Epochs Inference Time (ms) Trainning Time (s)

Table 4 presents the ablation study results of our model on the NSL-KDD and UNSW-NB15 datasets, 

verifying the impact of different components on the model’s performance. The baseline model shows relatively 

low performance, with an accuracy of 86.54% on the NSL-KDD dataset and 85.25% on the UNSW-NB15 

dataset. After introducing the Mamba model, all metrics improved, with accuracy increasing to 89.31% and 

88.67% on the two datasets, respectively. The addition of the ECANet model further enhanced performance, 

achieving accuracies of 93.06% and 91.74% on the NSL-KDD and UNSW-NB15 datasets, respectively. When 

both the Mamba and ECANet models were introduced simultaneously, the model performance reached its peak, 

with an accuracy of 96.45% on the NSL-KDD dataset and 95.64% on the UNSW-NB15 dataset, significantly 

improving all metrics. This demonstrates that the combination of Mamba and ECANet models significantly 

enhances the detection capability and robustness of the intrusion detection system. Figure 8 visualizes the 

comparison of the ablation study

Table 5 shows the ablation study results of our model on the CICIDS 2017 and AWID datasets, further 

verifying the impact of different components on the model’s performance. The baseline model shows relatively 

modest performance, with an accuracy of 86.14% on the CICIDS 2017 dataset and 87.34% on the AWID 

dataset. After introducing the Mamba model, all metrics significantly improved, with accuracies increasing to 

Figure 7.　Visual comparison of training indicators of multiple models on four datasets.
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89.48% and 90.6% on the CICIDS 2017 and AWID datasets, respectively. The addition of the ECANet model 

further enhanced performance, achieving accuracies of 92.17% on the CICIDS 2017 dataset and 92.8% on the 

AWID dataset. When both the Mamba and ECANet models were introduced simultaneously, the model 

performance reached its peak, with an accuracy of 97.64% on the CICIDS 2017 dataset and 96.41% on the 

AWID dataset. These results demonstrate that the combination of Mamba and ECANet models significantly 

enhances the detection capability of the intrusion detection system, especially on complex datasets. Similarly, 

Figure 9 visualizes the comparison of the ablation study.

Table 4.　Ablation experiments of this model on the NSL-KDD Dataset and UNSW-NB15 Dataset.

Model

baseline

+Mamba

+ECANet

+Mamba ECANet

Dataset

NSL-KDD Dataset

ACC 
(%)

86.54

89.31

93.06

96.45

P (%)

87.5

91.73

92.74

97.64

R (%)

86.34

90.6

92.49

96.14

AUC 
(%)

88.6

91.63

93.46

97.64

UNSW-NB15 Dataset

ACC 
(%)

85.25

88.67

91.74

95.64

P (%)

86.19

89.15

93.58

97.54

R (%)

86.16

90.17

92.37

96.73

AUC 
(%)

85.64

88.14

91.47

96.76

Table 5.　Ablation experiments of this model on the CICIDS 2017 Dataset and AWID Dataset.

Model

baseline

+Mamba

+ECANet

+Mamba ECANet

Dataset

CICIDS 2017 Dataset

ACC 
(%)

86.14

89.48

92.17

97.64

P (%)

87.71

90.14

91.61

95.21

R (%)

84.46

88.17

93.63

97.72

AUC 
(%)

86.14

91.74

94.1

98.09

AWID Dataset

ACC 
(%)

87.34

90.6

92.8

96.41

P (%)

85.49

88.49

91.4

96.37

R (%)

87.36

89.06

91.8

95.34

AUC 
(%)

86.46

91.73

93.94

97.54

Figure 9.　Comparative visualization of ablation experiments on CICIDS 2017 Dataset and AWID Dataset.

 5. Conclusions

This paper proposes an end-to-end data security intrusion detection system based on deep learning, 

integrating the Mamba and ECANet models and employing end-to-end learning for training and optimization. 
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By introducing the Mamba model, we effectively address the efficiency and accuracy issues of traditional 

methods in handling complex network data. The combination with the ECANet model further enhances feature 

selection through attention mechanisms, significantly improving the system’s capability and accuracy in 

detecting anomalous behaviors. Experiments on multiple public datasets including NSL-KDD, UNSW-NB15, 

CICIDS 2017, and AWID validate the effectiveness and robustness of our approach, demonstrating the system’s 

ability to maintain high detection performance across different network environments and attack types. 

Furthermore, through ablation studies, we further demonstrate the significant role of integrating the Mamba and 

ECANet models in enhancing system performance. Despite achieving satisfactory experimental results, there are 

still areas for further research. Future work could focus on optimizing the computational efficiency of the model 

to accommodate more complex and large-scale network environments. Exploring additional data augmentation 

techniques and unsupervised learning methods could reduce reliance on extensive labeled data. Applying the 

proposed method to more real-world scenarios would validate its generality and applicability across diverse 

network environments.
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