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Abstract: Advertising plays a pivotal role in enabling businesses to connect with potential customers and 

promote their offerings. In today’s digital age, advertising channels such as online display ads, social media 

promotions, and targeted email campaigns dominate the marketing landscape. Given the substantial investments 

companies make in these channels, evaluating advertising effectiveness through Return on Investment (ROI)—a 

metric representing the ratio of net profit to advertising expenditure—becomes crucial. Accurately predicting 

user advertising ROI aids in optimizing campaign strategies, ensuring resources are allocated effectively. 

Traditional heuristic and rule-based methods often fail to capture the complex relationships in user data, leading 

to limited predictive accuracy. Recent advancements in machine learning, particularly deep learning, have 

significantly improved ROI prediction by uncovering intricate, non-linear patterns in large datasets. However, 

deep learning models can be computationally intensive and challenging to deploy in resource-constrained 

environments. To address these limitations, this study proposes a novel lightweight distributed ensemble model 

that leverages distributed data parallelism (DDP), knowledge distillation, and ensemble learning. The 

framework trains a large teacher network using DDP, followed by distilling knowledge into a smaller student 

network, and integrates high-level representations with other machine learning models. The results demonstrate 

improved prediction accuracy and computational efficiency, making the model suitable for real-time advertising 

ROI forecasting.
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1. Introduction

Advertising has long been recognized as a fundamental strategy for businesses to communicate with 

potential customers and promote their products or services [1, 2]. In today’s highly competitive digital 

landscape, advertising takes many forms, including online display ads, sponsored social media posts, and 

targeted email campaigns. As companies invest increasingly large budgets in these advertising channels, 

measuring the effectiveness of such investments becomes critical. A common metric for assessing this 

effectiveness is Return on Investment (ROI) [3–5], which captures the ratio of net profit to advertising costs. For 

user-focused advertising, ROI offers insights into how effectively a campaign reaches its intended audience, 
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drives engagement, and ultimately generates revenue. Understanding and predicting user advertising ROI is 

therefore essential for optimizing campaign strategies and resource allocation.

Traditionally, advertisers and marketers relied on heuristic or rule-based approaches to estimate and forecast 

ROI [6]. These methods might include analyzing past campaign performance, using simple trend extrapolation, or 

applying basic statistical models [7–9]. While these approaches provided a starting point for evaluating campaign 

effectiveness, they often struggled to handle the complexity of modern digital advertising. With the proliferation of 

diverse user data—ranging from demographic information to real-time browsing behavior—traditional models 

frequently fail to capture nuanced relationships and interactions among multiple variables. As a result, their predictive 

power can be limited, leading to suboptimal budgeting decisions and reduced returns [10–12].

Over the past decade, machine learning and, more recently, deep learning have emerged as powerful tools to 

address these shortcomings. In particular, deep learning has demonstrated remarkable success in various 

domains, including computer vision, natural language processing, and recommender systems [13 – 16]. Neural 

networks excel at discovering complex, non-linear patterns in high-dimensional data, making them well-suited 

for advertising ROI prediction tasks. Researchers have developed numerous deep learning-based methods, such 

as multi-layer perceptrons (MLPs), recurrent neural networks (RNNs), and transformer-based architectures, each 

showing improvements over traditional statistical approaches. Alongside deep learning, ensemble methods (e.g., 

stacking or blending multiple models) further enhance performance by combining the strengths of individual 

predictors [17,18].

Despite these advances, there remain several gaps in the existing literature. First, many state-of-the-art deep 

learning models can be computationally heavy, requiring substantial Graphics Processing Unit (GPU) resources 

and prolonged training times. This high computational cost can be problematic for practitioners who need to 

update models frequently with new data or who lack large-scale hardware infrastructures. Second, distributed 

training techniques, such as Distributed Data Parallel (DDP), are increasingly employed to reduce training times 

and handle large datasets, yet the focus on lightweight approaches that maintain high predictive accuracy while 

minimizing resource consumption is still relatively sparse. Third, although knowledge distillation has proven 

effective for compressing large models into smaller, faster student networks without sacrificing too much 

accuracy, it has not been widely explored in the context of distributed training for advertising ROI prediction. 

Consequently, there is a clear opportunity to investigate how these techniques—DDP, model compression, and 

ensemble strategies—can be combined to achieve a more efficient yet accurate system.

In response to these challenges, this work proposes a novel lightweight distributed ensemble model shown 

in Figure 1 for user advertising return on investment prediction. The core idea involves training a relatively 

larger teacher network using distributed data parallelism, thereby leveraging multiple computational nodes (or 

GPUs) to speed up the learning process. Once the teacher network is fully trained, we employ knowledge 

distillation to transfer its learned representations to a smaller, student network. This student network maintains 

much of the predictive power of the teacher model but requires fewer parameters and less computational 

overhead, making it more practical for real-world deployment. Furthermore, we integrate traditional machine 

learning models, such as KNN or SVR, in an ensemble fashion. By extracting high-level features from the 

student network’s penultimate layer, we combine these distilled representations with the outputs of conventional 

predictors. This stacking or blending strategy capitalizes on the complementary strengths of different modeling 

paradigms: deep neural networks excel at discovering intricate feature representations, while classical 

algorithms can still perform robustly on certain data distributions. The final ensemble aims to deliver improved 

accuracy and efficiency compared to either deep learning or traditional methods alone.
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Figure 1.　The process of the proposed lightweight ensemble model based on knowledge distillation and 
distributed data parallelism.

2. Literature Review

Predicting user advertising ROI has become a focal point in marketing analytics, especially with the advent 

of machine learning techniques that offer enhanced accuracy and efficiency [19,20]. Shen et al. proposed a two-

stage framework designed to optimize ROI in large-scale promotional campaigns. In the initial stage, they 

employed machine learning models to predict individual user responses to promotions. Subsequently, they 

formulated an optimization problem that allocates incentives to users based on business objectives and resource 

constraints. A key innovation in their approach was the introduction of the deep-isotonic-promotion-network 

(DIPN), a deep neural network architecture that enforces isotonicity and smoothness in promotion response 

curves, thereby enhancing prediction accuracy [21].

Lewis and Wong addressed the challenge of quantifying advertising incrementality—the causal effect of ad 

exposure on user behavior. They developed a methodology that integrates ad bidding strategies, attribution 

models, and experimental data to compute the incremental impact of advertising efforts. Their approach 

leverages machine learning and causal econometrics to create a computational model that informs both bidding 

and attribution, aiming to improve ROI by accurately measuring the true effect of advertisements [22]. Kong et 

al. focused on optimizing bid recommendations to enhance advertising ROI. They introduced a scenario that 

identifies concavity changes in click prediction curves, determining optimal bid values where the marginal gain 

begins to diminish. By applying parametric learning and solving the associated constrained optimization 

problem, their method demonstrated significant improvements in business metrics, including revenue and click-

through rates, thereby offering a practical solution for bid optimization in advertising platforms [23]. 

Nakagawa et al. developed the Ranked Information Coefficient Neural Network (RIC-NN), a deep learning 

framework aimed at predicting stock returns. RIC-NN incorporates a nonlinear multi-factor approach, utilizes 

ranked information coefficients as stopping criteria, and applies transfer learning across different regions. This 

model has demonstrated superior performance compared to traditional machine learning methods and has 
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outperformed major equity investment funds over a fourteen-year period [24].

Despite these advancements, challenges persist in ROI prediction. Many machine learning models are 

computationally intensive, necessitating substantial resources, which may not be feasible for all practitioners. 

Therefore, there is a growing need for lightweight, distributed models that maintain high predictive accuracy 

while optimizing computational efficiency.

3. Method

3.1. Dataset Preparation

We utilized a user advertising dataset comprising 1000 records and 17 original features as well as one label. 

The distribution of all features is provided in Figures 2 and 3. The prediction target in this dataset is the return 

on investment, which reflects the effectiveness of advertising campaigns. To prepare the data for modeling, we 

removed unnecessary features, including ‘user_id’ , ‘ timestamp’  and ‘ad_id’ , resulting in 14 relevant features. 

The dataset includes both numerical features (6 in total) and categorical features (8 in total). To ensure 

compatibility with machine learning algorithms, we applied one-hot encoding to the categorical features, 

expanding the total feature count to 987 after encoding. For model training and evaluation, the dataset was 

divided into three subsets: (1) 70% of the data (700 records) was used for training the model. (2) 10% of the data 

(100 records) was reserved for validation to fine-tune hyperparameters. (3) The remaining 20% (200 records) 

was set aside for testing the model’s predictive performance.

Figure 2.　The distribution of all numerical features.

--4



Yu Q, et al. J. Inf. Technol. Policy. 2023

Figure 3.　The distribution of all categorical features.

3.2. Baseline Machine Learning Models

To predict user advertising ROI, we initially employed multiple baseline machine learning models. This 

comparative analysis aimed to identify the most suitable model for further optimization. By evaluating each 

model’s performance based on key metrics such as Mean Absolute Error (MAE) [25], Mean Squared Error 

(MSE) [26], Root Mean Squared Error (RMSE) [27], and R², we ensured that subsequent enhancements would 

be built upon the most robust predictive foundation. The baseline models selected for this study include ANN, 

KNN, SVR, and LR.

3.2.1. Artificial Neural Networks

Artificial neural networks [28–30] are computational models inspired by the structure and functioning of the 

human brain. They consist of layers of interconnected nodes (neurons), including an input layer, one or more 

hidden layers, and an output layer. Each connection between neurons has an associated weight, which is 

adjusted during training through backpropagation to minimize prediction errors. ANN excels at capturing 

complex, non-linear relationships within data, making it highly versatile across various tasks. The model’s 

flexibility allows it to approximate any continuous function given sufficient hidden units. However, ANN 

models are often computationally intensive, requiring significant resources and careful tuning of 

hyperparameters such as the number of layers, neurons per layer, learning rate, and activation functions. Despite 
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these challenges, ANN remains a powerful tool due to its ability to handle high-dimensional data and uncover 

intricate patterns.

The architecture of our ANN consists of four fully connected layers designed to capture complex patterns 

within the dataset. The input layer is tailored to match the dimensionality of the feature space, ensuring seamless 

integration with the processed data. The first hidden layer contains 64 neurons and utilizes a ReLU activation 

function, which introduces non-linearity and helps prevent vanishing gradient issues during training. The second 

hidden layer expands to 128 neurons, also employing the ReLU activation function, allowing the network to 

capture more complex relationships within the data. Subsequently, the third hidden layer reduces the number of 

neurons back to 64, maintaining the ReLU activation function to sustain non-linearity and efficient learning. 

This layer, often referred to as the penultimate layer, plays a crucial role in generating high-level representations 

that are later utilized in ensemble modeling and knowledge distillation processes. Finally, the output layer 

consists of a single neuron, providing the final prediction output. The model was trained using MSE Loss as the 

loss function, optimized with the Adam optimizer (learning rate = 0.001) for 10 epochs, ensuring efficient 

convergence and accurate predictions.

3.2.2. K-Nearest Neighbors

K-Nearest neighbors [31 – 33] is a non-parametric, instance-based learning algorithm that can be used for 

both classification and regression. It operates by identifying the k closest data points in the feature space to a 

given query point, using distance metrics such as Euclidean, Manhattan, or Minkowski distances. The prediction 

is made based on the average (for regression) or majority vote (for classification) of the neighboring points. One 

of KNN’s main advantages is its simplicity and ease of interpretation, as it makes no assumptions about the 

underlying data distribution. However, KNN’s performance can be significantly influenced by the choice of k 

and the distance metric. It can also be computationally expensive during the prediction phase, especially with 

large datasets, as it requires calculating the distance from the query point to all points in the training set. 

Nonetheless, its adaptability and intuitive nature make KNN a valuable baseline model.

3.2.3. Support Vector Regression

Support vector regression [34–36] is an extension of the support vector machine framework for regression 

tasks. SVR attempts to fit a function within a margin of tolerance (epsilon) around the data points while 

minimizing model complexity. The core idea is to ensure that the model is as flat as possible while still fitting 

the majority of the data points within the defined margin. SVR employs kernel functions such as linear, 

polynomial, and radial basis function (RBF) kernels to handle non-linear relationships. This flexibility makes 

SVR suitable for modeling complex patterns in data. The performance of SVR is highly dependent on the choice 

of kernel, regularization parameter (C), and epsilon, which control the trade-off between model complexity and 

training error. Although SVR can be computationally intensive, particularly with large datasets and non-linear 

kernels, it is well-regarded for its robustness and ability to generalize well to unseen data.

3.2.4. Linear Regression

Linear regression [37 – 39] is one of the simplest and most interpretable models in machine learning. It 

assumes a linear relationship between the independent variables and the dependent variable, represented by a 

straight line in two-dimensional space or a hyperplane in higher dimensions. The model estimates coefficients 

for each feature that minimize the sum of squared differences between the observed and predicted values using 

techniques such as ordinary least squares. LR provides clear insights into how each feature contributes to the 

prediction, which can be particularly useful for interpretability. However, LR relies on several assumptions, 

including linearity, independence of errors, and homoscedasticity, which may not hold in all datasets. 

Additionally, it is sensitive to multicollinearity, where highly correlated features can distort the estimated 

coefficients. Despite these limitations, LR remains a fundamental tool, often serving as a benchmark for 

evaluating the performance of more complex models.

--6



Yu Q, et al. J. Inf. Technol. Policy. 2023

3.3. DDP Training of the Artificial Neural Network

After evaluating the performance of various baseline machine learning models, including ANN, KNN, SVR, 

and LR, we observed that the ANN consistently outperformed the other models across key performance metrics. 

Due to its superior ability to capture complex, non-linear relationships in the dataset, ANN was selected as the 

primary model for subsequent optimization and enhancement. To further improve the training efficiency and 

scalability of the ANN model, we adopted the DDP training approach. DDP is a parallelization technique 

provided by PyTorch that allows for efficient training of deep learning models across multiple GPUs. Unlike 

traditional data parallelism, which can suffer from slowdowns due to gradient aggregation on a single device, 

DDP distributes the model across multiple GPUs, each processing a portion of the input data in parallel [40–42]. 

After each forward and backward pass, DDP synchronizes gradients across all devices, ensuring consistent 

model updates while minimizing communication overhead. This approach leads to near-linear scaling of training 

speed with the number of GPUs used.

3.4. Knowledge Distillation for Buidling Lightweight ANN Model

The previously constructed ANN demonstrated strong feature extraction capabilities due to its deeper 

architecture and multiple layers. However, the large number of parameters made it computationally intensive, 

which is not ideal for real-world commercial deployment where efficiency and scalability are critical. To address 

this limitation and build a more lightweight model without significantly compromising performance, we adopted 

Knowledge Distillation (KD) [43–45].

Knowledge Distillation is a model compression technique where a smaller, simpler model (student model) is 

trained to replicate the behavior of a larger, more complex model (teacher model). The student model learns not 

only from the ground truth but also from the soft targets provided by the teacher model, which contain rich 

information about the underlying data distribution. This approach allows the student model to achieve similar 

performance levels while maintaining a reduced number of parameters and faster inference times.

In this study, we designed a student model with a streamlined architecture consisting of three fully 

connected layers. The first layer contains 32 neurons, followed by a hidden layer with 16 neurons, and finally an 

output layer with a single neuron. ReLU activation functions were applied after each hidden layer to introduce 

non-linearity. Compared to the teacher model, the student model’s reduced complexity makes it more suitable 

for deployment in resource-constrained environments. During the distillation process, the student model was 

trained using a loss function that combines the traditional prediction loss with a distillation loss. The distillation 

loss measures the difference between the outputs of the student and teacher models, enabling the student to 

mimic the teacher’s predictive behavior. By balancing these two loss components, the student model inherits the 

teacher model’s generalization capabilities while significantly reducing the computational burden.

3.5. Lightweight ANN Model and Its Integration with Other Machine Learning Models

After training the lightweight student model using knowledge distillation, we further enhanced its predictive 

performance through an ensemble learning strategy [46–48]. Although the student model retained much of the 

predictive capability of the larger teacher model while significantly reducing the number of parameters, there 

was still potential to boost its overall accuracy by leveraging the strengths of other machine learning algorithms. 

To achieve this, we extracted the high-level features from the penultimate layer (the second-to-last layer) of the 

trained student model. This layer captures refined and abstracted representations of the input data, which are 

highly informative for subsequent prediction tasks. Instead of relying solely on the ANN’s final output, these 

high-level features were combined with the outputs of three additional machine learning models: KNN, SVR, 

and LR. The integration process involved training each of these models using the high-level representations 

obtained from the student network. Predictions from these individual models were then compared. The final 

output of the ensemble system was selected based on the best-performing model, evaluated using standard 

performance metrics such as MAE, MSE, RMSE, and R2.
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4. Results and Discussion

4.1. The Performance Comparison among Baseline Models

The comparison of different baseline models for ROI prediction highlights notable differences in 

performance across various evaluation metrics, including MAE, MSE, RMSE, and R² shown in Table 1 and 

Figure 4. The ANN consistently outperformed the other models in all key performance measures. Specifically, 

the ANN achieved the lowest MAE of 0.6967, indicating the smallest average absolute error between predicted 

and actual values. It also recorded the lowest MSE at 1.5392 and RMSE at 1.2406, reflecting its ability to 

minimize large errors more effectively than the competing models. The R2 value of 0.5274 further demonstrates 

that the ANN could explain over half of the variance in the target variable, showcasing a stronger fit to the data 

compared to the other baseline models.

In contrast, the Support Vector Regression (SVR) model showed a higher MAE of 0.9913, MSE of 3.5921, and 

RMSE of 1.8953, accompanied by a negative R2 value of −0.1030. This negative R2 suggests that the SVR model 

performed worse than a simple mean-based prediction, highlighting its limited effectiveness in capturing the 

underlying patterns of the dataset. Similarly, the K-Nearest Neighbors (KNN) model presented an MAE of 1.1153, 

MSE of 3.4488, and RMSE of 1.8571, with an R2 value of −0.0590, reflecting its suboptimal performance in 

predicting ROI accurately. The Linear Regression (LR) model performed the poorest among the four, with the highest 

MAE of 1.5717, MSE of 4.2424, RMSE of 2.0597, and an R2 value of −0.3026, indicating a weak linear relationship 

between the features and the target variable. Additionally, scatter plots shown in Figure 5 comparing predicted and 

actual ROI values reveal that the ANN’s predictions align more closely along the ideal diagonal line, representing 

perfect predictions. In comparison, the predictions from SVR, KNN, and LR models exhibit greater dispersion from 

the ideal line, highlighting their reduced predictive accuracy.

Table 1.　The performance of baseline models evaluated by different metrics.

Model Names

ANN

SVR

KNN

LR

MAE

0.6967

0.9913

1.1153

1.5717

MSE

1.5392

3.5921

3.4488

4.2424

RMSE

1.2406

1.8953

1.8571

2.0597

R2

0.5274

−0.1030

−0.0590

−0.3026

Figure 4.　The visualization of comparison among various baseline models evaluated by different metrics.
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4.2. The Performance Comparison between ANN (teacher) and Lightweight ANN (Student) Model

The comparison between the teacher and student ANN models is presented in Table 2 and visualized in 

Figures 6 and 7. The teacher ANN model, with a deeper architecture and more parameters, achieved superior 

performance across all evaluated metrics mentioned before. In contrast, the student ANN model, constructed 

through knowledge distillation, demonstrated slightly lower predictive performance. The MAE, MSE, and 

RMSE values increased to 0.8533, 2.4199, and 1.5556, respectively, with the R² value decreasing to 0.2570. 

This decline in performance is expected, as the student model was intentionally designed with fewer layers and 

parameters (32, 129) to reduce computational complexity. Despite this reduction in accuracy, the student 

model’s inference time significantly improved, dropping to 0.007590 s. This represents a substantial increase in 

processing speed, making the student model highly suitable for real-time prediction scenarios where rapid 

response times are critical (Table 2, Figure 6). Figure 7 further illustrates the prediction performance by 

comparing the scatter plots of predicted versus actual ROI values for both models. The teacher ANN’s 

predictions align more closely with the ideal diagonal line, reflecting higher predictive accuracy. Although the 

student model’s predictions show greater dispersion, the overall trend remains consistent with the actual values.

Table 2.　The performance of teacher and student ANN models evaluated by different metrics.

Model Names

Teacher ANN

Student ANN

MAE

0.6967

0.8533

MSE

1.5392

2.4199

RMSE

1.2406

1.5556

R2

0.5274

0.2570

Inference Time

0.022696 s

0.007590 s

The Number of 
Parameters

79809

32129

Figure 5.　The visualization of prediction results among various baseline models.
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4.3. The Performance Comparison among Various Ensembled Models

We further compared ensembled models to evaluate the impact of integrating the student ANN with different 

models. The performance comparison of various ensembled models is presented in Table 3 and visualized in 

Figures 8 and 9. Among the evaluated models, the Student ANN + KNN ensemble achieved the best overall 

performance, with the lowest MAE (0.6606), MSE (1.3450), and RMSE (1.1598), along with the highest R2 

value of 0.5870 (Table 3, Figure 8). This improvement can be attributed to KNN’s ability to capture local data 

patterns based on similarity measures, which complements the student ANN’s global feature extraction 

capability. The scatter plot in Figure 9 further confirms this, as the predictions of the Student ANN + KNN 

ensemble align more closely with the ideal diagonal line, indicating higher prediction accuracy. In contrast, the 

Figure 6.　The visualization of comparison between teacher and student ANNs evaluated by different metrics.

Figure 7.　The visualization of prediction results between teacher and student ANNs.
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Student ANN + LR and Student ANN + SVR ensembles exhibited inferior performance, with negative R2 values 

(− 0.0457 and − 0.1229, respectively), suggesting that these models failed to generalize effectively. The poor 

performance of the LR ensemble may result from its assumption of linearity, which cannot capture the non-

linear relationships in the data. Similarly, the SVR ensemble’s lower performance could be due to inappropriate 

kernel settings or sensitivity to outliers. Overall, the results demonstrate that incorporating KNN into the 

ensemble effectively enhances the predictive performance of the student ANN model by leveraging local 

data structures.

4.4. Discussion

The proposed method, which integrates DDP training, knowledge distillation, and ensemble learning, 

demonstrates strong predictive performance with notable improvements in computational efficiency. The final 

ensembled model, particularly the Student ANN + KNN combination, achieves the best trade-off between 

accuracy and inference speed, making it highly suitable for real-time ROI prediction scenarios. The use of 

knowledge distillation significantly reduces the number of parameters and inference time while maintaining 

reasonable predictive accuracy. Moreover, the ensemble strategy further enhances performance by leveraging 

the complementary strengths of different models.

However, despite these advantages, some limitations remain. The student model, while lightweight, still 

experiences a decline in accuracy compared to the teacher model, as seen in reduced R2 values. This 

performance drop indicates that knowledge distillation might not fully capture the complex patterns learned by 

the larger teacher network. Additionally, the ensemble model relies on predefined machine learning algorithms, 

which may limit its adaptability to highly dynamic advertising environments. Future work could explore more 

advanced ensemble techniques or adaptive learning methods to address these challenges. Incorporating more 

diverse data sources and testing on larger datasets could also improve generalization and robustness.

Table 3.　The performance of various ensembled models evaluated by different metrics.

Model Names

Student ANN

Student ANN + LR

Student ANN + SVR

Student ANN + KNN

MAE

0.8533

1.0927

1.0258

0.6606

MSE

2.4199

3.4056

3.6570

1.3450

RMSE

1.5556

1.8454

1.9123

1.1598

R2

0.2570

−0.0457

−0.1229

0.5870

Figure 8.　The visualization of comparison among different ensembled models.
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5. Conclusions

This study presents an efficient framework for user advertising ROI prediction by combining DDP training, 

knowledge distillation, and ensemble learning techniques. The proposed approach addresses the computational 

challenges associated with deep learning models, offering a lightweight alternative without significantly 

compromising accuracy. Experimental results indicate that the student ANN model, generated through 

knowledge distillation, achieves significantly faster inference times while maintaining acceptable prediction 

performance. Furthermore, the integration of machine learning models such as KNN, SVR, and LR with high-

level features extracted from the student network enhances predictive accuracy. Among the tested 

configurations, the Student ANN + KNN ensemble achieved the best performance, highlighting the 

complementary strengths of neural networks and KNN’s local pattern-capturing ability. However, the approach 

is not without limitations. The performance trade-off between accuracy and model simplification remains a 

challenge, as some complex patterns from the teacher model are lost during distillation. Additionally, the 

reliance on predefined ensemble models may limit adaptability in dynamic advertising environments. Future 

research should focus on adaptive ensemble methods and more diverse datasets to further enhance model 

robustness and generalization. Overall, this framework demonstrates significant potential for practical 

deployment in real-time advertising ROI prediction tasks, balancing speed, accuracy, and resource efficiency.
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Figure 9.　The visualization of prediction results among different ensembled models.
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