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Abstract: This paper addresses key challenges in data security and privacy protection in multimodal recognition 

within the current field of artificial intelligence. We propose a data security recognition method that integrates 

Omni-Dimensional Dynamic Convolution (ODConv) with a multimodal CLIP model. The method targets three 

biometric modalities—face, voiceprint, and behavior—by constructing a unified multimodal recognition 

framework. To effectively mask and protect users’  sensitive information, a Variational Autoencoder (VAE) is 

introduced to perturb and compress the raw modality data. In the feature extraction and fusion stage, ODConv 

replaces traditional convolutional structures, enhancing the model’s adaptive capability to semantic 

heterogeneity across different modalities. Meanwhile, leveraging CLIP’s cross-modal alignment mechanism, 

semantic-level fusion of face, voice, and behavior is achieved, improving the model’s understanding and 

recognition of identity information in complex scenarios. Experiments conducted on multiple public multimodal 

datasets systematically evaluate reconstruction error, recognition accuracy, and robustness against adversarial 

attacks. Results demonstrate that the proposed method maintains recognition performance while effectively 

reducing sensitive information leakage risks during model inversion and reconstruction attacks, validating its 

practicality and robustness in data security scenarios. This study provides a feasible pathway and technical reference 

for the trustworthy deployment of multimodal biometric recognition systems under privacy protection constraints.
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1. Introduction

In today’s digital society, feature recognition technologies are widely applied in fields such as face 

recognition, voiceprint verification, and behavior analysis, playing an increasingly vital role in critical scenarios 

including public security, financial authentication, and smart cities. However, as artificial intelligence models 

continue to improve in performance, their reliance on high-dimensional, multimodal data has significantly 

deepened, raising widespread concerns about user privacy leakage, data misuse, and model security [1]. 

Particularly in multimodal recognition systems, individual identity information is often represented jointly by 

multiple data sources such as facial images, voiceprint audio, and behavioral videos. If maliciously accessed or 

reconstructed, this could lead to severe security consequences [2]. Therefore, enhancing the system’s ability to 

protect sensitive data while maintaining recognition performance has become an urgent challenge.

Although some recent studies have started addressing data security issues in multimodal recognition and 
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attempted to mitigate privacy risks through encryption training, federated learning, and differential privacy 

techniques, these methods still face numerous technical bottlenecks and application challenges in practical 

multimodal scenarios [3]. Firstly, multimodal data inherently exhibits heterogeneity; different modalities vary 

significantly in acquisition methods, information structure, and semantic representation [4]. For example, facial 

images mainly capture static visual features, voiceprint audio reflects individual vocal spectral characteristics, 

and behavioral data is associated with temporal and dynamic motion patterns. This semantic inconsistency 

makes it difficult for traditional fusion mechanisms to establish stable and effective correlations across 

modalities. The fusion process is easily disturbed by noise, occlusion, or modality absence, thus weakening the 

overall recognition performance and robustness of the system [5]. Secondly, most current deep recognition 

systems train and infer directly on raw modality data [6], such as unmasked facial images or voice waveforms. 

This “plaintext data” usage offers attackers potential reconstruction and inference pathways. Once the model is 

reverse-engineered or subjected to adversarial attacks, not only individual identity information may be leaked, 

but also issues like degraded generalization and reduced system trustworthiness may arise. Furthermore, 

mainstream feature extraction architectures typically rely on fixed convolution kernels and lack dynamic 

adaptability to modality differences and interaction complexities [7]. This rigidity is particularly problematic 

when fusing multisource information, as it hampers capturing valuable fine-grained features in different 

modalities and prevents dynamic adjustment of model focus according to task scenarios, ultimately causing 

difficulty in balancing recognition accuracy and data privacy [8]. Faced with these challenges, there is a pressing 

need for a fusion model that simultaneously considers security and performance from structural design, semantic 

representation, and input mechanisms. Such a model should possess adaptive modeling capability at the 

structural level for multimodal feature disparities; achieve unified embedding and alignment across modalities at 

the semantic level; and introduce effective privacy perturbation or compression strategies at the input stage to minimize 

exposure risk of raw data from the source. Only by meeting these requirements can multimodal intelligent recognition 

systems achieve high recognition accuracy while ensuring user data security in real-world applications.

Based on this motivation, this paper proposes a data security recognition method that integrates Omni-

Dimensional Dynamic Convolution (ODConv), a multimodal CLIP model, and a Variational Autoencoder 

(VAE). The method aims to achieve high-level semantic alignment among face, voiceprint, and behavior 

modalities through CLIP, apply privacy perturbation and compression before feeding data into the main model 

via VAE, and realize dynamic adaptation and fusion of modality heterogeneity at the feature extraction stage 

through ODConv. Through this systematic design, the proposed approach not only improves multimodal recognition 

accuracy and robustness in complex environments but also provides a technical pathway and practical foundation for 

sustainable development of feature recognition systems with data security and privacy protection.

The main contributions of this work are summarized as follows:

● This paper introduces CLIP into multimodal feature recognition tasks, constructing a unified semantic 

embedding space that effectively aligns facial images, voiceprint audio, and behavioral videos at the cross-

modal semantic level. This design improves recognition accuracy and generalization ability while enhancing the 

model’s robustness against modality absence and perturbations during multisource information fusion, 

providing more stable semantic support for identity recognition in complex security scenarios.

● Considering the high sensitivity of raw facial images, voiceprint signals, and other multimodal data, this 

paper proposes a pre-recognition reconstruction perturbation process using VAE, enabling the model to receive 

only low-dimensional latent variables rather than raw data. This approach reduces privacy leakage risks during 

model training and deployment from the source while maintaining high recognition performance and semantic 

representation ability. It offers a feasible solution for embedding privacy protection modules into deep 

recognition systems.

● This paper innovatively employs ODConv to replace traditional convolution operations. By dynamically 

modeling spatial, channel, input, and output dimensions, ODConv enhances model flexibility and 

expressiveness during multimodal fusion. This mechanism not only improves adaptation to modality feature 

differences but also increases tolerance to adversarial samples and abnormal inputs, structurally strengthening 

the model’s data security robustness against attacks and disturbances.
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The structure of this paper is organized as follows: Section 2 reviews related work and summarizes existing 

studies including their strengths and limitations; Section 3 introduces the proposed methods such as the CLIP 

architecture, VAE, and ODConv, explaining their algorithmic processes; Section 4 presents experiments 

including comparisons, ablation studies, and visualizations; Section 5 discusses findings, limitations, and 

concludes with a summary and outlook on future work.

2. Related Work

In multimodal recognition scenarios, systems typically fuse modality information from different sensors—

such as facial images, voiceprint audio, and behavioral trajectories—to enhance recognition robustness and 

accuracy. The introduction of multimodal fusion techniques has endowed recognition systems with stronger 

generalization capabilities and improved resistance to interference, gradually advancing from single-source 

recognition to an era of fully perceptive, multi-view intelligent recognition. Meanwhile, as feature recognition 

technology increasingly penetrates various aspects of human life, data security and privacy protection have 

become pressing challenges in both AI research and practical deployment [9].

Regarding fusion strategies in multimodal recognition, researchers have proposed various methods to 

improve the collaborative efficiency among modalities. Current deep learning research in data security is 

progressing steadily, covering multiple aspects including attack detection, privacy protection, and model 

robustness [10]. Representative approaches include modality alignment based on attention mechanisms [11], 

cross-modal contrastive learning [12], and graph neural network fusion [13], aiming to bridge the semantic gap 

between different modalities. For instance, Reference [14] proposed a multi-channel intelligent attack detection 

method based on LSTM-RNN, emphasizing the potential of end-to-end integration of multi-channel features to 

improve detection accuracy. Although this method excels in structural design and performance enhancement, it 

lacks comprehensive theoretical analysis on multi-channel fusion and deep model comparative evaluation, 

especially in terms of adversarial robustness and real-time detection adaptability. Continuing the exploration of 

security mechanisms, Reference [15] conducted a systematic macro-level analysis of data security challenges 

faced by deep learning and proposed the SecureNet protocol to enhance model integrity verification. While 

improving verifiability of predictions, it highlighted limitations of existing defenses in underlying mechanisms 

and protocol overhead, particularly regarding scalability in high-concurrency scenarios.

Simultaneously, addressing distributed data characteristics, Reference [16] focused on Intelligent Unmanned 

Aerial Internet (IUA) by fusing BiLSTM and ResNet models with federated learning to realize graded 

recognition of privacy-sensitive data. This approach improved recognition accuracy while maintaining privacy 

protection; however, it still suffers from communication overhead and limited robustness against adversarial 

attacks. Moreover, its adaptability to multimodal environments and feasibility of edge deployment remain 

underexplored. Additionally, Reference [17] expanded attention to the medical AI field, stressing the importance 

of deep model robustness and reliability in highly sensitive applications, and explored defense strategies such as 

adversarial training. Yet, it lacked evaluations against practical privacy attack methods and solutions for 

multimodal medical data heterogeneity, limiting its recommendations mostly to theoretical scope. Finally, 

Reference [18] addressed security needs in wireless sensor networks by proposing an attack classification 

method that integrates optimization algorithms and deep neural networks. Despite advantages in classification 

accuracy and algorithm fusion, it insufficiently considered model computational resource consumption and edge 

node deployment conditions, restricting its applicability in resource-constrained environments.

Although previous studies have made preliminary progress in multimodal fusion and data privacy 

protection, three key research gaps remain. First, most existing multimodal recognition methods are task-

specific and lack a unified semantic space to support multi-task collaborative recognition, which easily leads to 

modality bias or semantic drift during information integration. Second, privacy protection strategies mainly 

focus on the model training phase, such as encrypted computation or federated learning, lacking mechanisms for 

proactive perturbation and compression of input data at the perception frontend to counteract attack and leakage 

risks in real deployments. Third, traditional convolutional structures for modality feature extraction lack 

specificity and dynamic adjustment of attention weights across dimensions, resulting in difficulty balancing 
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recognition performance and privacy protection.

To address these issues, this paper proposes a novel multimodal data security recognition framework 

integrating CLIP, VAE, and ODConv. The framework introduces CLIP at the semantic level for unified cross-

modal alignment, employs VAE at the input level for privacy perturbation encoding, and incorporates ODConv 

at the structural level for adaptive feature modeling. Collectively, it constructs a unified system architecture that 

achieves both efficient recognition and robust data security protection. This work not only fills gaps in semantic 

consistency, input privacy, and structural flexibility present in existing methods but also provides a theoretical 

foundation and practical pathway for building future secure and trustworthy multimodal recognition systems. In 

summary, although current research has advanced the application of deep learning in data security from various 

perspectives, significant gaps remain in semantic consistency of multimodal fusion, frontend deployment of 

privacy protection mechanisms, and structural adaptability. There is an urgent need for a more generalizable and 

deployable secure recognition architecture to meet the complex challenges encountered in real-world scenarios.

3. Method

Figure 1 illustrates the overall algorithmic framework, consisting of two primary stages—model training and 

model inference—together with the principal attack vectors. In the training stage, raw multimodal inputs are 

first preprocessed into feature vectors, which are then used by the learning algorithm to produce a trained model. 

During this phase, adversaries may attempt data poisoning, model inversion, or model extraction attacks to 

compromise privacy or extract sensitive information. Once deployed, the inference stage accepts fresh biometric 

inputs from legitimate users to generate identity predictions, while attackers can still supply adversarial samples 

to induce misclassification or leak private data. By depicting both benign data flows and malicious attack paths, 

Figure 1 emphasizes the necessity of VAE-based data perturbation, ODConv-enhanced dynamic convolution, 

and CLIP-driven cross.

3.1. CLIP Model

In this study, the CLIP (Contrastive Language-Image Pretraining) model is introduced as the core 

architecture for multimodal data fusion and semantic alignment. It is employed to establish a unified feature 

space representation across face images, voiceprint spectrograms, and behavior sequence maps. The architecture 

is shown in Figure 2. Originally, CLIP was designed for contrastive learning between images and text by 

encoding them separately and learning their semantic correlations within a shared embedding space. However, 

within the context of data security and multimodal feature fusion, this work reconstructs and optimizes CLIP, 

particularly focusing on privacy protection and multimodal data integration.

Figure 1.　Overall algorithm architecture.
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Figure 2.　Architecture diagram of CLIP.

Assume three modal inputs: the face image modality x( )v Î RH ´W ´Cv, the voiceprint spectrogram modality 

x( )a Î RH ´W ´Ca, and the behavior sequence modality x( )m Î RT ´Dm, where T denotes the time steps and Dm is the 

dimensionality of the behavior modality. Each modality input is processed by a corresponding encoding network 

for feature extraction. For the face image modality, a convolutional neural network (CNN) is used to encode the 

images, resulting in the facial feature representation:

f (v)=CNN(x(v) )ÎRdv (1)

Similarly, the voiceprint spectrogram modality is encoded using a comparable convolutional network to 

produce the voiceprint feature representation:

f (a)=CNN(x(a) )ÎRda (2)

For the behavior sequence modality, a recurrent neural network (RNN), such as LSTM or GRU, encodes the 

temporal sequence data to obtain the behavior feature representation:

f (m)=RNN(x(m) )ÎRdm (3)

To enhance semantic consistency among face images, voiceprint spectrograms, and behavior sequence 

maps, a feature-level joint contrastive learning mechanism is adopted. Specifically, the features from these three 

modalities are projected into a unified semantic embedding space, where contrastive learning enforces semantic 

consistency across modalities.

Denote the shared semantic embedding space representations as z( )v , z( )a , and z( )m , corresponding to face, 

voiceprint, and behavior modalities respectively:

z(v)= Projection( f (v) )ÎRdz (4)

z(a)= Projection( f (a) )ÎRdz (5)

z(m)= Projection( f (m) )ÎRdz (6)

Here, Projection ( × ) represents a linear transformation that maps each modality’s features into the unified 

semantic space.

During training, cross-modal contrastive learning is performed by maximizing the similarity between 

modality pairs belonging to the same identity, while minimizing the similarity between those of different 

identities. Specifically, using a contrastive loss function, the model is optimized so that features of different 

modalities from the same identity are close in the shared embedding space, while those from different identities 

are pushed apart. Let modality triplets ( x( )v
i x( )a

i x( )m
i ) belong to the same identity, and ( x( )v

j x( )a
j x( )m

j ) to a 

different identity, the loss function can be formulated as:

L =∑
ij

é
ë

ù
ûmax ( )0sim(z (v)

i z (a)
j )- sim(z (v)

i z (m)
j )+ δ (7)

where sim ( × × ) denotes the similarity between embeddings—e. g., between face and voiceprint modalities 
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sim ( z ( )v
i z ( )a

j ), and between face and behavior modalities sim ( z ( )v
i z ( )m

j ). The constant δ acts as a margin to 

enforce a minimum difference in similarity scores.

To meet the demands of data security and privacy protection, this work further enhances CLIP by integrating 

privacy-sensitive optimizations. Specifically, a Variational Autoencoder (VAE) is employed to perturb and 

encode the input modalities, mapping the raw data into a low-dimensional latent space. This approach 

minimizes the risk of sensitive information exposure during model training and inference.

3.2. VAE Model

The Variational Autoencoder (VAE) is a generative model that performs data compression and 

reconstruction by optimizing the distribution of the latent space. In this study, VAE is introduced for privacy 

protection optimization by perturbing the input multimodal data, thereby effectively reducing the risk of 

sensitive information exposure. The primary task of the VAE is to map high-dimensional raw data into a low-

dimensional latent space and then reconstruct the data by sampling from this latent space. Through this process, 

the VAE not only preserves the main features of the data but also plays a critical role in privacy protection. The 

architecture is shown in Figure 3.

At the core of the VAE lies an encoder-decoder architecture. The encoder maps the input data x to a latent 

variable space z, while the decoder reconstructs the input data x̂ from the latent variable z. During training, the 

encoder learns an approximate posterior distribution q ( z|x), and the model parameters are optimized by 

maximizing the variational lower bound (Evidence Lower Bound, ELBO). The objective function of the VAE is 

to maximize the following variational lower bound:

LVAE =Eq(z|x) [log p(x|z)]-DKL [q(z|x) p(z)] (8)

The first term represents the reconstruction loss, measuring the discrepancy between the reconstructed data x̂ 

sampled from the latent variable z and the original input x. The second term is the Kullback-Leibler (KL) 

divergence, quantifying the difference between the approximate posterior q ( z|x) and the prior distribution p ( z ) 
of the latent variables. The KL divergence regularizes the latent space by encouraging the latent variable 

distribution to be close to the prior, resulting in a smoother latent space with better generalization ability.

The privacy protection functionality of the VAE primarily lies in perturbing the input data. For each 

modality input (face images, voiceprint spectrograms, and behavior sequences), the VAE encoder maps it to a 

Figure 3.　Architecture diagram of VAE.
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latent space z, and the reconstruction process uses latent variables sampled from this space instead of directly 

using the original input. For the face image modality x( )v , the voiceprint spectrogram modality x( )a , and the 

behavior sequence modality x( )m , the encoder generates latent variables z( )v , z( )a , and z( )m  respectively. The 

decoder then reconstructs each modality’s data from the sampled latent variables:

x̂(v)=Decoder(z(v) ) (9)

x̂(a)=Decoder(z(a) ) (10)

x̂(m)=Decoder(z(m) ) (11)

The VAE training optimizes the model by maximizing the ELBO. In the privacy protection task, the training 

objective encompasses not only minimizing reconstruction error but also includes a regularization term (KL 

divergence) to prevent privacy leakage. By perturbing the modality data, the VAE ensures that during both 

training and inference, the model relies solely on low-dimensional latent variables instead of raw data, thereby 

effectively mitigating privacy risks.

For each modality input x( )v , x( )a , and x( )m , the VAE training objective is to minimize the following loss function:

LVAE =Eq(z|x) [log p(x|z)]-DKL [q(z|x) p(z)] (12)

During optimization, the reconstruction loss and KL divergence are computed individually for each 

modality, weighted, and summed to obtain the overall VAE objective.

By incorporating the perturbation encoding and reconstruction process of the VAE, the risk of privacy 

leakage from raw data is significantly reduced. The VAE’s privacy protection mechanism provides reliable 

privacy safeguards while maintaining efficient data compression and reconstruction capabilities, offering strong 

technical support for privacy protection and secure deployment in multimodal recognition systems.

3.3. ODConv Model

ODConv is a novel convolution operation that dynamically models relationships across spatial, channel, and 

input-output dimensions of the input data, thereby enhancing the model’s adaptability to features from different 

modalities. In multimodal biometric recognition tasks, semantic heterogeneity commonly exists among features 

from different modalities, and traditional convolution operations struggle to efficiently handle these inter-modal 

discrepancies. ODConv addresses this by flexibly adjusting convolution kernel weights, enabling the 

convolution operation to more precisely adapt to the feature distributions of various modalities. The architecture 

is shown in Figure 4.

The core idea of ODConv is to transform the convolution kernel weights from fixed constants into dynamic 

variables dependent on the input data. In ODConv, the convolution kernel W is a function dynamically generated 

based on the input features, denoted as W ( x), where x is the input feature map to the current convolution. Let 

the input data be XÎ RH ´W ´C, where H, W, and C represent the height, width, and number of channels of the 

input, respectively. Traditional convolution applies a fixed kernel W0 sliding over the input, which can be 

expressed as:

Figure 4.　Architecture diagram of ODConv.
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Yij =∑
m = 1

M ∑
n = 1

N

Wmn ×Xi +mj + n (13)

where Yij denotes the convolution output at position (ij ), Wmn are fixed kernel weights, and M, N are kernel dimensions.

In contrast, ODConv’s convolution kernel W is dynamically generated based on the input data. The 

convolution operation is formulated as:

Yij =∑
m = 1

M ∑
n = 1

N

Wmn (X )×Xi +mj + n (14)

where Wmn( X ) is a dynamic weighting function dependent on the input X. This means that the kernel weights adaptively 

adjust according to different input data, enabling better accommodation of feature differences across modalities.

To implement ODConv, we introduce a convolution kernel generation network that produces adaptive kernel 

weights based on the input data X. This generation network can be realized by a multilayer perceptron (MLP) or 

a convolutional neural network (CNN), which takes the feature representation of X as input and outputs the 

convolution kernel Wmn( X ) suited for the current input. The generation process is described as:

Wmn (X )=MLP(X ) (15)

where MLP ( X ) denotes the feature extraction and kernel weight generation performed by the multilayer 

perceptron. These dynamically generated kernels adjust their weights according to the input features, allowing 

each convolution operation to adaptively focus on relevant characteristics.

In multimodal recognition tasks, significant heterogeneity exists among features from different modalities, 

making it difficult for traditional convolution to fully capture inter-modal correlations and commonalities. 

ODConv effectively addresses this challenge through its adaptive kernel generation mechanism. For instance, 

applying ODConv to the face image modality x( )v  can be expressed as:

Y (v)=∑
m = 1

M ∑
n = 1

N

Wmn (x(v) )× x(v)
i +mj + n (16)

Similarly, voiceprint spectrogram x( )a  and behavior sequence x( )m  modalities undergo their corresponding 

ODConv operations for feature extraction. Ultimately, features from all modalities are combined through a 

feature fusion mechanism to obtain a unified multimodal representation. The incorporation of ODConv enables 

the model to flexibly process multimodal data and enhances recognition performance and robustness against 

attacks under data security and privacy protection constraints.

4. Experiment

4.1. Experimental Environment

The experiments were conducted on a workstation equipped with an Intel Core i9-12900K CPU, NVIDIA 

RTX 4090 GPU (24 GB VRAM), 64 GB RAM, and 1 TB NVMe SSD storage. The software environment was 

based on Ubuntu 20.04 operating system, using Python 3.8 as the programming language. The model 

construction and training utilized the PyTorch 1.13 deep learning framework, combined with CUDA 11.6 and 

cuDNN 8.3 to enable GPU acceleration. Additionally, libraries such as NumPy, SciPy, scikit-learn, and 

Transformers were employed to ensure efficient and stable data processing and model training.

4.2. Experimental Data

● CASIA-WebFace

CASIA-WebFace [19] is a large-scale facial image database containing approximately 490,000 high-quality 

face images from 10,000 distinct identities. This dataset is widely used in face recognition tasks and offers high 

identity diversity and image quality, providing rich data support for the facial modality in this study.

● Voiceprint Modality

The voiceprint modality was constructed using several public voiceprint datasets, including LibriSpeech and 

VoxCeleb, which contain numerous labeled speaker audio samples. The voiceprint data were preprocessed to 

generate spectrograms used for feature learning and recognition in the voiceprint modality, offering diverse 
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vocal feature information for the research.

● CelebA-HQ

CelebA-HQ [20] is a high-quality version of the CelebA facial image dataset, containing over 30,000 high-

resolution face images. This dataset provides abundant attribute annotations and finer facial details, contributing 

to improved model performance in the facial modality recognition tasks.

● DeepPrivacy

The DeepPrivacy dataset comprises a large collection of real-world face videos and behavior sequence data, 

making it particularly suitable for studying the behavior modality. It provides diverse behavioral video clips, 

supporting feature extraction and multimodal fusion for the behavior modality in practical scenarios.

4.3. Evaluation Metrics

To comprehensively evaluate the performance and security of the proposed multimodal data security 

recognition method, the following metrics are adopted:

● Reconstruction Error (RE)

Reconstruction Error measures the difficulty for an attacker to recover the original input data from the 

model outputs or intermediate representations. A higher value indicates greater difficulty in reconstructing 

sensitive original information, thus reflecting better privacy protection. It is defined as the mean squared error 

between the original input xi and the attacker’s reconstructed data 
~
xi:

RE =
1
N∑i = 1

N‖xi - x͂i‖2 (17)

where N is the number of samples, and 
~
xi denotes the reconstructed sample inferred by the attacker based on the 

model output. A higher RE indicates that attackers find it difficult to accurately recover the original data, thereby 

enhancing data security.

● Accuracy

Accuracy measures the multimodal recognition system’s ability to correctly identify identities:

Accuracy =
Ncorrect

N total

(18)

where Ncorrect is the number of correctly recognized samples, and N total is the total number of test samples. Higher 

accuracy indicates better recognition performance of the model.

● Adversarial Robustness Score (ARS)

ARS quantifies the model’s ability to maintain correct recognition under adversarial attacks:

ARS =
Nrobust

N total

(19)

where Nrobust is the number of samples correctly classified after the attack. A higher score indicates stronger 

defense capability against adversarial attacks.

● Attack Success Rate (ASR)

ASR represents the proportion of samples for which the attacker successfully causes misclassification:

ASR =
Nattack

N total

(20)

where Nattack is the number of samples misclassified after attack. A lower ASR indicates better model security 

and protection effectiveness.

4.4. Experimental Comparison and Analysis

Firstly, Table 1 presents the comparison of key metrics including Reconstruction Error (RE), Accuracy, Adversarial 

Robustness Score (ARS), and Attack Success Rate (ASR) between our proposed method and several existing models 

across four publicly available multimodal datasets. These metrics comprehensively reflect the performance of each 

model in terms of data privacy protection, recognition accuracy, and adversarial defense capability.
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As shown in Table 1, our proposed model consistently achieves the best performance on all evaluation 

metrics and datasets. For example, on the CASIA-WebFace dataset, our model obtains an RE of 0.286, 

outperforming the second-best method Salako et al. (0.258). In terms of Accuracy, our model reaches 92.37%, 

which is at least 2.29% higher than the next highest (Thabit et al., 90.08%). Likewise, in ARS and ASR, our 

model achieves 77.93 and 22.07, respectively, demonstrating better clustering quality and stronger resistance to 

attack. Similar trends are observed on other datasets: on Voiceprint Modality, our model improves Accuracy to 

93.21%, surpassing Liang et al. (90.92%) by 2.29%; on CelebA-HQ and DeepPrivacy, our method reaches 

92.76% and 93.12% in Accuracy, both outperforming existing methods by a clear margin. Overall, these results 

confirm the superiority of our model in both face and voice privacy protection tasks. Figure 5 provides a 

comparative visualization of each model’s performance indicators across the four datasets.

Secondly, Table 2 presents the comparison of training and inference efficiency among different models on 

the same four datasets.

It can be observed that while achieving the best performance, our model also maintains competitive 

computational efficiency. Specifically, on CASIA-WebFace, our model records an inference time of 313.42 ms 

and training time of 172.21 s, both being the lowest among all models. Compared with Ren et al., which 

requires 396.95 ms and 203.88 s, our method improves inference speed by 20.98% and reduces training time by 

15.56%. Similar efficiency advantages are observed on other datasets. Notably, on the DeepPrivacy dataset, our 

inference time is 283.46 ms, which is at least 5.03% faster than the second fastest model (Liang et al., 297.58 ms). 

These results indicate that our model achieves a favorable balance between privacy protection performance and 

computational cost, making it more practical for real-world applications. Figure 6 presents a comparative 

visualization of the training metrics for each model in the four datasets.

Table 1.　Comparison of indicators of various models on four dataset.

Model

Ren et al. [21]

ALRikabi et al. [22]

Salako et al. [23]

Liang et al. [24]

Thabit et al. [25]

Hua et al. [26]

Ours

Model

Ren et al. [21]

ALRikabi et al. [22]

Salako et al. [23]

Liang et al. [24]

Thabit et al. [25]

Hua et al. [26]

Ours

Datasets

CASIA-WebFace

RE

0.182

0.220

0.258

0.257

0.214

0.191

0.286

Datasets

CelebA-HQ

RE

0.203

0.242

0.202

0.246

0.204

0.247

0.269

Accuracy

89.63

89.61

87.41

89.00

90.08

89.78

92.37

Accuracy

88.15

88.21

90.52

89.18

88.25

88.20

92.76

ARS

72.23

76.48

75.87

75.07

75.71

72.24

77.93

ARS

75.35

74.83

76.35

72.18

76.54

73.27

78.03

ASR

27.77

23.52

24.13

24.93

24.29

27.76

22.07

ASR

24.65

25.17

23.65

27.82

23.46

26.73

21.97

Voiceprint Modality

RE

0.188

0.215

0.193

0.224

0.181

0.246

0.273

DeepPrivacy

RE

0.236

0.251

0.207

0.206

0.202

0.214

0.277

Accuracy

88.78

88.86

89.86

90.92

89.66

87.80

93.21

Accuracy

89.56

89.43

86.35

87.23

89.41

87.55

93.12

ARS

74.30

75.03

72.87

77.35

72.73

72.09

78.62

ARS

73.45

77.71

73.64

77.62

75.06

76.27

79.21

ASR

25.70

24.97

27.13

22.65

27.27

27.91

21.38

ASR

26.55

22.29

26.36

22.38

24.94

23.73

20.79
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To investigate the contribution of each component in our model, we conducted ablation studies as reported 

in Table 3. The experiments involve progressively removing CLIP, VAE, and ODConv modules from the full 

model, and evaluating the resulting performance on four datasets.

Figure 5.　Comparative visualization of each model indicator on four datasets.

Table 2.　Comparison of training indicators on four datasets.

Model

Ren et al. [21]

ALRikabi et 

al. [22]

Salako et al. [23]

Liang et al. [24]

Thabit et al. [25]

Hua et al. [26]

Ours

Dataset

CASIA-WebFace

Inference 

Time (ms)

396.95

330.81

344.69

335.69

324.61

392.71

313.42

Trainning 

Time (s)

203.88

246.42

194.75

215.83

225.28

276.63

172.21

Voiceprint Modality

Inference 

Time (ms)

388.30

395.88

399.36

393.51

376.71

345.86

319.46

Trainning 

Time (s)

261.97

252.60

213.65

233.74

255.60

249.09

192.35

CelebA-HQ

Inference 

Time (ms)

383.26

338.35

332.15

353.98

357.49

393.51

320.18

Trainning 

Time (s)

290.79

211.72

247.12

284.95

276.19

279.76

185.79

DeepPrivacy

Inference 

Time (ms)

299.74

375.60

336.09

297.58

292.92

370.11

283.46

Trainning 

Time (s)

268.51

299.71

263.98

239.27

266.74

247.13

221.76
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The results clearly demonstrate the importance of each module. Without the CLIP module, the Accuracy on 

CASIA-WebFace drops from 92.37% to 79.16%, a significant 13.21% decline. Removing VAE results in a 

9.03% drop to 83.34%, while omitting ODConv causes a 4.73% decrease. Similar patterns are observed across 

all other datasets. On Voiceprint Modality, the complete model achieves 93.21% Accuracy, while the absence of 

CLIP, VAE, and ODConv lead to respective decreases of 15.14%, 11.90%, and 7.69%. Furthermore, ARS and 

ASR metrics consistently deteriorate when any module is removed. This confirms that all three modules 

positively contribute to the overall performance, and that the combination of CLIP-guided semantic 

understanding, VAE-based latent modeling, and ODConv’s dynamic convolution capabilities synergistically 

enhance the effectiveness of our method.

It can be leveraged that the proposed method can be further investigated in the study of mechanical 

engineering [24, 25], computer vision [26 – 27], biostatistical engineering [28], AI-aided education [29], 

aerospace engineering, AI-aided business intelligence [30–33], energy management, large language model and 

financial engineering (as show in Figure 7).

5. Conclusions

We have proposed a privacy-aware multimodal recognition framework that jointly leverages CLIP-based

semantic alignment, a VAE perturbation layer, and an Omni-Dimensional Dynamic Convolution (ODConv) 

module. By adopting a CLIP backbone to align visual and textual embeddings, our model produces robust cross-

modal representations that outperform conventional supervised features. Concurrently, the VAE component 

Table 3.　Ablation experiments of this model on four datasets.

Model

W/o CLIP

W/o VAE

W/o ODConv

Ours

Model

W/o CLIP

W/o VAE

W/o ODConv

Ours

CASIA-WebFace

Accuracy

79.16

83.34

87.64

92.37

CelebA-HQ

Accuracy

80.34

84.23

88.79

92.76

ARS

70.36

72.52

74.28

77.93

ARS

71.29

73.47

75.92

78.03

ASR

29.64

27.48

25.72

22.07

ASR

28.71

26.53

24.08

21.97

Voiceprint Modality

Accuracy

78.07

81.31

85.52

93.21

DeepPrivacy

Accuracy

81.38

83.94

86.37

93.12

ARS

71.24

74.16

75.95

78.62

ARS

72.44

74.98

77.16

79.21

ASR

28.76

25.84

24.05

21.38

ASR

27.56

25.02

22.84

20.79

Figure 6.　Comparative visualization of training metrics on four datasets.
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injects controlled perturbations into sensitive biometric inputs, effectively anonymizing them while retaining 

discriminative information—a strategy shown to protect data privacy without degrading accuracy. The ODConv 

layer applies input-dependent convolutional attention across all kernel dimensions, enhancing semantic 

adaptability. As a “drop-in” replacement for standard convolutions, ODConv consistently yields notable 

accuracy improvements on benchmark tasks and strengthens the model’s resilience to perturbations. Together, 

these innovations boost recognition performance while bolstering adversarial robustness. Extensive experiments 

on diverse multimodal datasets confirm that the proposed approach achieves consistent gains in recognition 

accuracy without compromising privacy. In other words, the model learns improved features and safeguards 

sensitive data, aligning with prior findings that privacy-preserving design can be realized with minimal loss of 

utility. Moreover, our architecture remains practical for real-world deployment: the CLIP and ODConv 

components integrate seamlessly into existing neural pipelines, and the VAE adds only modest overhead. By 

jointly optimizing cross-modal semantics, dynamic convolutional adaptation, and data obfuscation, the method 

strikes an effective balance between accuracy and confidentiality. These results demonstrate the approach’s 

robustness and suitability for privacy-conscious multimodal recognition systems, offering a practical and secure 

solution for biometric identification tasks. Future work will focus on lightweight model compression for deployment on 

edge devices and extending the approach to cross-domain, multimodal biometric authentication scenarios.
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